# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ test.lmCoef <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Convert to a timeSeries Object with Dummy Dates x = as.timeSeries(x) # Fit Parameters: fit = regFit(Y ~ X1 + X2 + X3, data = x, use = "lm") fit # Extract Fitted values: head(slot(fit, "fitted")) val = fitted(fit) head(val) class(val) # Extract Residuals: head(slot(fit, "residuals")) val = residuals(fit) head(val) class(val) # Return Value: return() } # ------------------------------------------------------------------------------ test.rlmCoef <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Convert to a timeSeries Object with Dummy Dates x = as.timeSeries(x) # Fit Parameters: fit = regFit(Y ~ X1 + X2 + X3, data = x, use = "rlm") fit # Extract Fitted values: head(slot(fit, "fitted")) val = fitted(fit) head(val) class(val) # Extract Residuals: head(slot(fit, "residuals")) val = residuals(fit) head(val) class(val) # Return Value: return() } # ------------------------------------------------------------------------------ test.amCoef <- function() { # Simulate Artificial LM: x = regSim(model = "GAM3", n = 50) # Convert to a timeSeries Object with Dummy Dates x = as.timeSeries(x) # Fit Parameters: fit = regFit(Y ~ X1 + X2 + X3, data = x, use = "gam") fit # Extract Fitted values: head(slot(fit, "fitted")) val = fitted(fit) head(val) class(val) # Extract Residuals: head(slot(fit, "residuals")) val = residuals(fit) head(val) class(val) # Return Value: return() } # ------------------------------------------------------------------------------ test.pprCoef <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Convert to a timeSeries Object with Dummy Dates x = as.timeSeries(x) # Fit Parameters: fit = regFit(Y ~ X1 + X2 + X3, data = x, use = "ppr") fit # Extract Fitted values: head(slot(fit, "fitted")) val = fitted(fit) head(val) class(val) # Extract Residuals: head(slot(fit, "residuals")) val = residuals(fit) head(val) class(val) # Return Value: return() } # ------------------------------------------------------------------------------ test.nnetCoef <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Convert to a timeSeries Object with Dummy Dates x = as.timeSeries(x) # Fit Parameters: fit = regFit(Y ~ X1 + X2 + X3, data = x, use = "nnet") fit # Extract Fitted values: head(slot(fit, "fitted")) val = fitted(fit) head(val) class(val) # Extract Residuals: head(slot(fit, "residuals")) val = residuals(fit) head(val) class(val) # Return Value: return() } # ------------------------------------------------------------------------------ test.polymarsCoef <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Convert to a timeSeries Object with Dummy Dates x = as.timeSeries(x) # Fit Parameters: fit = regFit(Y ~ X1 + X2 + X3, data = x, use = "polymars") fit # Extract Fitted values: head(slot(fit, "fitted")) val = fitted(fit) head(val) class(val) # Extract Residuals: head(slot(fit, "residuals")) val = residuals(fit) head(val) class(val) # Return Value: return() } ################################################################################