# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: REGRESSION MODELLING DESCRIPTION: # regFit Wrapper Function for Regression Models ################################################################################ test.lmFit <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Fit Parameters: lmfit = regFit(Y ~ X1 + X2 + X3, data = x, use = "lm") print(lmfit) summary(lmfit) # plot(lmfit) fitted(lmfit) slot(lmfit, "fitted") residuals(lmfit) slot(lmfit, "residuals") coef(lmfit) formula(lmfit) predict(lmfit) # Return Value: return() } # ------------------------------------------------------------------------------ test.rlmFit <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Fit Parameters: rlmfit = regFit(Y ~ X1 + X2 + X3, data = x, use = "rlm") print(rlmfit) summary(rlmfit) # plot(rlmfit) fitted(rlmfit) slot(rlmfit, "fitted") residuals(rlmfit) slot(rlmfit, "residuals") coef(rlmfit) formula(rlmfit) predict(rlmfit) head(rlmfit@fit$model) # Return Value: return() } # ------------------------------------------------------------------------------ test.glmFit <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Fit Parameters: glmfit = regFit(Y ~ X1 + X2 + X3, data = x, use = "glm") print(glmfit) summary(glmfit) # plot(glmfit) print(glmfit@fit) summary(glmfit@fit) fitted(glmfit) slot(glmfit, "fitted") residuals(glmfit) slot(glmfit, "residuals") coef(glmfit) formula(glmfit) predict(glmfit) # Return Value: return() } # ------------------------------------------------------------------------------ test.gamFit <- function() { # Simulate Artificial LM: x = regSim(model = "GAM3", n = 50) # Fit Parameters: gamfit = regFit(Y ~ s(X1) + s(X2) + X3, data = x, use = "gam") print(gamfit) summary(gamfit) # plot(gamfit) print(gamfit@fit) summary(gamfit@fit) fitted(gamfit) slot(gamfit, "fitted") residuals(gamfit) slot(gamfit, "residuals") coef(gamfit) formula(gamfit) predict(gamfit) gamfit@fit$terms # Return Value: return() } # ------------------------------------------------------------------------------ test.pprFit <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Fit Parameters: pprfit = regFit(Y ~ X1 + X2 + X3, data = x, use = "ppr") ppr = ppr(Y ~ X1 + X2 + X3, data = x, nterms = 2) print(pprfit) summary(pprfit) # plot(pprfit) print(pprfit@fit) summary(pprfit@fit) fitted(pprfit) slot(pprfit, "fitted") residuals(pprfit) slot(pprfit, "residuals") coef(pprfit) formula(pprfit) predict(pprfit) pprfit@fit$terms # Return Value: return() } # ------------------------------------------------------------------------------ test.nnetFit <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Fit Parameters: nnetfit = regFit(Y ~ X1 + X2 + X3, data = x, use = "nnet") print(nnetfit) summary(nnetfit) # plot(nnetfit) print(nnetfit@fit) summary(nnetfit@fit) fitted(nnetfit) slot(nnetfit, "fitted") residuals(nnetfit) slot(nnetfit, "residuals") coef(nnetfit) formula(nnetfit) predict(nnetfit) nnetfit@fit$terms # Return Value: return() } # ------------------------------------------------------------------------------ test.polymarsFit <- function() { # Simulate Artificial LM: x = regSim(model = "LM3", n = 50) # Fit Parameters: polymarsfit = regFit(Y ~ X1 + X2 + X3, data = x, use = "polymars") print(polymarsfit) summary(polymarsfit) fitted(polymarsfit) slot(polymarsfit, "fitted") residuals(polymarsfit) slot(polymarsfit, "residuals") coef(polymarsfit) formula(polymarsfit) predict(polymarsfit) polymarsfit@fit$terms # Return Value: return() } ################################################################################