# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # S3-METHODS: PRINT METHOD: # show.fREG Prints results from a regression model fit ################################################################################ setMethod(f = "show", signature(object = "fREG"), definition = function(object) { # A function implemented by Diethelm Wuertz # Description: # Print method for Regression Modelling, an object of class "fREG" # FUNCTION: # Title: cat("\nTitle:\n ") cat(as.character(object@title), "\n") # Call: # cat("\nCall:\n") # cat(paste(deparse(object@call), sep = "\n", collapse = "\n"), # "\n", sep = "") # Formula: cat("\nFormula:\n ") # cat(as.character(object@formula), "\n") print(object@formula) # Family: if (object@family[1] != "" && object@family[2] != "") { cat("\nFamily:\n ") cat(as.character(object@family[1:2]), "\n") } # Digits: digits = max(4, getOption("digits") - 4) # Model Parameters: cat("\nModel Parameters:\n") # Regression Model LM / RLM: if (object@method == "lm" | object@method == "rlm") { print.default(format(object@fit$coef, digits = digits), print.gap = 2, quote = FALSE) } # Regression Model GLM: if (object@method == "glm") { if (length(object@fit$coef)) { # if (is.character(co = object@fit$contrasts)) co = object@fit$contrasts if (is.character(co)) cat(" [contrasts: ", apply(cbind(names(co), co), 1, paste, collapse = "="), "]") # cat(":\n") print.default(format(object@fit$coefficients, digits = digits), print.gap = 2, quote = FALSE) } else { cat("No coefficients\n\n") } } # Regression Model GAM: if (object@method == "gam" | object@method == "am") { print.default(format(object@fit$coef, digits = digits), print.gap = 2, quote = FALSE) } # Regression Model PPR: if (object@method == "ppr") { cat("-- Projection Direction Vectors --\n") print(object@fit$alpha) cat("-- Coefficients of Ridge Terms --\n") print(object@fit$beta) } # Regression Model POLYMARS: if (object@method == "polymars") { print(object@fit$coef) } # Regression Model NNET: if (object@method == "nnet") { cat(" a ",object@fit$n[1], "-", object@fit$n[2], "-", object@fit$n[3], " network", " with ", length(object@fit$wts), " weights\n", sep="") cat(" options were -") tconn = diff(object@fit$nconn) if (tconn[length(tconn)] > object@fit$n[2]+1) cat(" skip-layer connections ") if (object@fit$nunits > object@fit$nsunits && !object@fit$softmax) cat(" linear output units ") if (object@fit$entropy) cat(" entropy fitting ") if (object@fit$softmax) cat(" softmax modelling ") if (object@fit$decay[1] > 0) cat(" decay=", object@fit$decay[1], sep="") cat("\n") Weights = object@fit$wts print(Weights) } # Residual Variance: # cat("\nResidual Variance:\n", var(object@fit$residuals)) cat("\n") # Return Value: invisible() }) ################################################################################