# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: DESCRIPTION REGRESSION METHODS: # predict.fREG Predicts values from a fitted regression model ################################################################################ setMethod(f = "predict", signature(object = "fREG"), definition = function(object, newdata, se.fit = FALSE, type = "response", ...) { # A function implemented by Diethelm Wuertz # Description: # Predict method for Regression Modelling, an object of class "fREG" # FUNCTION: # Fit: fit = object@fit # Data as data.frame: if (missing(newdata)) { newdata = object@data$data } # Predict: if (object@method == "nnet" & type == "response") type = "raw" ans = .predict(object = fit, newdata = newdata, se.fit = se.fit, type = type, ...) # Make the output from 'predict' unique: if (se.fit) { if (!is.list(ans)) { if (is.matrix(ans)) ans = as.vector(ans) names(ans) = rownames(newdata) ans = list(fit = ans, se.fit = NA*ans) } else { ans = ans[1:2] } } else { if (is.matrix(ans)) ans = as.vector(ans) names(ans) = rownames(newdata) } # Return Value: ans }) # ------------------------------------------------------------------------------ # Note, in the following "object" concerns to the slot @fit: .predict.lm <- predict.lm # <- function (object, newdata, se.fit = FALSE, scale = NULL, df = Inf, # interval = c("none", "confidence", "prediction"), level = 0.95, # type = c("response", "terms"), terms = NULL, na.action = na.pass, # pred.var = res.var/weights, weights = 1, ...) .predict.rlm <- predict.lm # .predict.glm <- predict.glm # <- function (object, newdata = NULL, type = c("link", "response", # "terms"), se.fit = FALSE, dispersion = NULL, terms = NULL, # na.action = na.pass, ...) .predict.gam <- predict.gam # <- function (object, newdata, type = "link", se.fit = FALSE, terms = NULL, # block.size = 1000, newdata.guaranteed = FALSE, na.action = na.pass, # ...) .predict.ppr <- function(object, ...) { predict(object, ...) } # <- function(object, newdata, ...) .predict.nnet <- function(object, ...) { predict(object, ...) } # <- function(object, newdata, type=c("raw","class"), ...) #predict.polymars ---- can be found in polymars.R # <- function(object, newdata, se.fit = FALSE, type = "response", ...) ################################################################################