# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2007, Diethelm Wuertz, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: DESCRIPION: # tsTest Time Series Test Suite # FUNCTION: DEPENDENCY TEST: # bdsTest Brock-Dechert-Scheinkman test for iid series # FUNCTION: NONLINEARITY TESTS: # wnnTest White Neural Network Test for Nonlinearity # tnnTest Teraesvirta Neural Network Test for Nonlinearity ################################################################################ test.tsSuite = function() { # NA # Return Value: return() } # ------------------------------------------------------------------------------ test.bdsTest = function() { # iid example: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") x = rnorm(100) plot(x, type = "l", col = "steelblue") test = bdsTest(x) print(test) p.value = as.vector(test@test$p.value) # Is each of the 8 p.values greater 0.1? checkEqualsNumeric(sum(p.value > 0.1), 8) # Not identically distributed: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") x = c(rnorm(50), runif(50)) test = bdsTest(x) print(test) p.value = as.vector(test@test$p.value) # Is each of the 8 p.values smaller 1e-3? checkEqualsNumeric(sum(p.value < 1e-3), 8) # Not independent: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") n = 500 x = rep(0, times = n) for(i in (2:n)) x[i] = 0.4*x[i-1] + tanh(x[i-1]) + rnorm(1, sd = 0.5) plot(x, type = "l", col = "steelblue") test = bdsTest(x) print(test) p.value = as.vector(test@test$p.value) # Is each of the 8 p.values smaller 1e-6? checkEqualsNumeric(sum(p.value < 1e-6), 8) # Return Value: return() } # ------------------------------------------------------------------------------ test.wnnTest = function() { # White NN Test: # See tseries Package: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") x = runif(1000, -1, 1) plot(x, type = "l", col = "steelblue") test = wnnTest(x) print(test) p.value = as.vector(test@test$p.value) # Is each of the two p.values greater 0.5? checkTrue(as.logical(mean(p.value > 0.5))) ## Generate time series which is nonlinear in ``mean'' RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") n = 1000 x = rep(0, times = n) for(i in (2:n)) x[i] <- 0.4*x[i-1] + tanh(x[i-1]) + rnorm(1, sd = 0.5) plot(x, type = "l", col = "steelblue") test = wnnTest(x) print(test) p.value = as.vector(test@test$p.value) # Is each of the two p.values smaller than 1e-4? checkTrue(as.logical(mean(p.value < 1e-4))) # Return Value: return() } # ------------------------------------------------------------------------------ test.tnnTest = function() { # Teraesvirta NN Test: # See example from tseries Package: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") x = runif(1000, -1, 1) plot(x, type = "l", col = "steelblue") test = tnnTest(x) print(test) p.value = as.vector(test@test$p.value) # Is each of the two p.values greater 0.5? checkTrue(as.logical(mean(p.value > 0.5))) ## Generate time series which is nonlinear in ``mean'' RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") n = 1000 x = rep(0, times = n) for(i in (2:n)) x[i] <- 0.4*x[i-1] + tanh(x[i-1]) + rnorm(1, sd = 0.5) plot(x, type = "l", col = "steelblue") test = tnnTest(x) print(test) p.value = as.vector(test@test$p.value) # Is each of the two p.values smaller than 1e-4? checkTrue(as.logical(mean(p.value < 1e-4))) # Return Value: return() } ################################################################################