# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: SIMULATION: # garchSim Simulates a GARCH/APARCH process ################################################################################ test.garchSim.arch = function() { # Simulation of ARCH Models: # ARCH(1) - default omega and alpha spec = garchSpec(model = list()) garchSim(n = 10, spec = spec) # ARCH(1) - default omega spec = garchSpec(model = list(alpha = 0.1)) garchSim(n = 10, spec = spec) # ARCH(1) spec = garchSpec(model = list(omega = 1e-6, alpha = 0.1)) garchSim(n = 10, spec = spec) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchSim.arma.arch = function() { # Simulation of ARMA-ARCH Models: # AR(1)-ARCH(1) spec = garchSpec(model = list(ar = 0.5)) garchSim(n = 10, spec = spec) # AR([1,5])-ARCH(1) spec = garchSpec(model = list(ar = c(0.5, 0, 0, 0 ,0.1))) garchSim(n = 10, spec = spec) # ARMA(1,2)-ARCH(1) spec = garchSpec(model = list(ar = 0.5, ma = c(0.3,-0.3))) garchSim(n = 10, spec = spec) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchSim.dist.arch = function() { # Simulation of non-normal ARCH Models: # rsnorn-ARCH(2) spec = garchSpec(model = list(alpha = c(0.12, 0.04), dist = 2/3), cond.dist = "snorm") garchSim(n = 10, spec = spec) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchSim.garch = function() { # Simulation of GARCH Models: # GARCH(1,1) spec = garchSpec() garchSim(n = 10, spec = spec) # GARCH(1,1) spec = garchSpec(model = list(alpha = 0.1, beta = 0.8)) garchSim(n = 10, spec = spec) # GARCH(1,1) spec = garchSpec(model = list(omega = 1e-6, alpha = 0.1, beta = 0.8)) garchSim(n = 10, spec = spec) # GARCH(1,2) spec = garchSpec(model = list(alpha = 0.1, beta = c(0.4, 0.4))) garchSim(n = 10, spec = spec) # GARCH(2,1) spec = garchSpec(model = list(alpha = c(0.12, 0.04), beta = 0.08)) garchSim(n = 10, spec = spec) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchSim.dist.garch = function() { # Simulation of non-normal GARCH Models: # RVs: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") # Normal - GARCH(1,1) spec = garchSpec(model = list(), cond.dist = "norm") garchSim(n = 10, spec = spec) # Skewed Normal - GARCH(1,1) spec = garchSpec(model = list(parm = 2), cond.dist = "snorm") garchSim(n = 10, spec = spec) # GED - GARCH(1,1) spec = garchSpec(model = list(parm = 4), cond.dist = "ged") garchSim(n = 10, spec = spec) # Skewed GED - GARCH(1,1) spec = garchSpec(model = list(parm = c(4, 2)), cond.dist = "sged") garchSim(n = 10, spec = spec) # Normalized Student t - GARCH(1,1) spec = garchSpec(model = list(parm = 4), cond.dist = "std") garchSim(n = 10, spec = spec) # Skewed Normalized Student t - GARCH(1,1) spec = garchSpec(model = list(parm = c(4, 2)), cond.dist = "sstd") garchSim(n = 10, spec = spec) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchSim.aparch = function() { # RVs: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") # Taylor Schwert Normal GARCH(1,1) spec = garchSpec(list(alpha = 0.1, delta = 1)) garchSim(n = 10, spec = spec) # Return Value: return() } ################################################################################