# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: PARAMETER ESTIMATION: # 'fGARCH' S4: fGARCH Class representation # garchFit Fits GARCH and APARCH processes ################################################################################ # garchFit( # formula, # data, # init.rec = c("mci", "uev"), # delta = 2, # skew = 1, # shape = 4, # cond.dist = c("dnorm", "dsnorm", "dged", "dsged", "dstd", "dsstd"), # include.mean = TRUE, # include.delta = NULL, # include.skew = NULL, # include.shape = NULL, # leverage = NULL, # trace = TRUE, # algorithm = c("sqp", "nlminb", "lbfgsb", "nlminb+nm", "lbfgsb+nm"), # control = list(), # title = NULL, # description = NULL, # ...) # ------------------------------------------------------------------------------ test.garchFit.garch11 <- function() { # Use Simulated Series - an Object of class 'ts' ... # RVs: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") # Normal GARCH(1, 1) x = garchSim(n = 250, returnClass = "numeric") # Fit: fit = garchFit( ~ garch(1,1), data = x, trace = FALSE) print(coef(fit)) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchFit.garch21 <- function() { # Use Simulated Series - an Object of class 'ts' ... # RVs: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") # Normal-GARCH(2, 1) model = list(omega = 1e-06, alpha = c(0.1, 0.2), beta = 0.6) spec = garchSpec(model) x = garchSim(spec = spec, n = 250, returnClass = "numeric") # Fit fit = garchFit( ~ garch(2,1), data = x, trace = FALSE) print(coef(fit)) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchFit.ar1garch11 <- function() { # Use Simulated Series - an Object of class 'ts' ... # RVs: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") # Normal AR(1)-GARCH(1,1): model = list(omega = 1e-06, ar = -0.1, alpha = c(0.1, 0.2), beta = 0.6) spec = garchSpec(model) x = garchSim(spec = spec, n = 250, returnClass = "numeric") # Fit: fit = garchFit(~ ar(1) + garch(1,1), data = x, trace = FALSE) print(coef(fit)) # Return Value: return() } ################################################################################