# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: PARAMETER ESTIMATION: # 'fGARCH' S4: fGARCH Class representation # garchFit Fits GARCH and APARCH processes ################################################################################ test.garchFit.faked <- function() { # Numeric Vector RVs: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") # Simulate normal GARCH(1, 1) numeric Vector: model = list(omega = 1e-06, alpha = 0.1, beta = 0.8) spec = garchSpec(model) print(spec) N = 250 # UNIVARIATE: x.vec = 100*garchSim(spec, N, returnClass = "numeric") print(head(x.vec)) x.tS = dummyDailySeries(matrix(x.vec), units = "GARCH11") print(head(x.tS)) x.zoo = zoo(as.vector(x.vec), order.by = as.Date(rownames(x.tS))) print(head(x.zoo)) x.ts = ts(x.vec) print(head(x.ts)) # FIT FROM UNIVARIATE DATA SERIES: fit = garchFit( ~ garch(1,1), data = x.tS, trace = FALSE) print(fit) formula(fit) fit = garchFit( ~ garch(1,1), data = as.vector(x.tS), trace = FALSE) print(fit) formula(fit) a = 2 b = 2 fit = garchFit( ~ garch(1,1), data = a*as.vector(0+b*x.tS), trace = FALSE) print(fit) formula(fit) # WHAT HAPPENS WHEN WE (MIS)SPECIFY LHS ? # ... lhs will be ignored for the univariate case: fit = garchFit(any ~ garch(1,1), data = x.vec, trace = FALSE) print(fit) formula(fit) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchFit.mult.faked <- function() { # Numeric Vector RVs: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") # Simulate normal GARCH(1, 1) numeric Vector: model = list(omega = 1e-06, alpha = 0.1, beta = 0.8) spec = garchSpec(model) print(spec) N = 250 # UNIVARIATE: x.vec = 100*garchSim(spec, N, returnClass = "numeric") print(head(x.vec)) x.tS = dummyDailySeries(matrix(x.vec), units = "GARCH11") print(head(x.tS)) x.zoo = zoo(as.vector(x.vec), order.by = as.Date(rownames(x.tS))) print(head(x.zoo)) x.ts = ts(x.vec) print(head(x.ts)) # MULTIVARIATE: X.mat = cbind(GARCH11 = x.vec, R = rnorm(N)/1000) print(head(X.mat)) X.tS = dummyDailySeries(X.mat, units = c("GARCH11", "R")) print(head(X.tS)) X.zoo = zoo(X.mat, order.by = as.Date(rownames(x.tS))) print(head(X.zoo)) X.mts = ts(X.mat) print(head(X.mts)) # FIT FROM MULTIVARIATE DATA SET: fit = garchFit(GARCH11 ~ garch(1,1), data = X.tS, trace = FALSE) print(fit) formula(fit) fit = garchFit(GARCH11 ~ garch(1,1), data = as.matrix(X.tS), trace = FALSE) print(fit) formula(fit) a = 2 b = 2 fit = garchFit(GARCH11 ~ garch(1,1), data = a*as.matrix(0+b*X.tS), trace = FALSE) print(fit) formula(fit) a = 2 b = 2 fit = garchFit(GARCH11 ~ garch(1,1), data = a*as.matrix(0+b*X.tS), trace = FALSE) print(fit) formula(fit) # Return Value: return() } # ------------------------------------------------------------------------------ test.garchFit.mult.lhs.faked <- function() { # Numeric Vector RVs: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") # Simulate normal GARCH(1, 1) numeric Vector: model = list(omega = 1e-06, alpha = 0.1, beta = 0.8) spec = garchSpec(model) print(spec) N = 250 # UNIVARIATE: x.vec = 100*garchSim(spec, N, returnClass = "numeric") print(head(x.vec)) x.tS = dummyDailySeries(matrix(x.vec), units = "GARCH11") print(head(x.tS)) x.zoo = zoo(as.vector(x.vec), order.by = as.Date(rownames(x.tS))) print(head(x.zoo)) x.ts = ts(x.vec) print(head(x.ts)) # MULTIVARIATE: X.mat = cbind(GARCH11 = x.vec, R = rnorm(N)/1000) print(head(X.mat)) X.tS = dummyDailySeries(X.mat, units = c("GARCH11", "R")) print(head(X.tS)) X.zoo = zoo(X.mat, order.by = as.Date(rownames(x.tS))) print(head(X.zoo)) X.mts = ts(X.mat) print(head(X.mts)) # LEFT HAND SIDE FORMULA FAKED FIT: fit = garchFit(GARCH11 + R ~ garch(1,1), data = X.tS, trace = FALSE) print(fit) formula(fit) head(fit@data$data) head(fit@data$Data) head(rowSums(fit@data$Data)) # LEFT HAND SIDE FORMULA FAKED AND DATA FAKED FIT: fit = garchFit(GARCH11 + R ~ garch(1,1), data = as.matrix(X.tS), trace = FALSE) print(fit) formula(fit) head(fit@data$data) head(fit@data$Data) head(rowSums(fit@data$Data)) # Return Value: return() } ################################################################################