# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: DESCRIPTION: # summary Summary method for an object of class 'fGARCH' ################################################################################ setMethod(f = "summary", signature(object = "fGARCH"), definition = function(object) { # A function implemented by Diethelm Wuertz # Description: # Summary method for an object of class "fGARCH" # Arguments: # object - an object of class 'fGARCH' # FUNCTION: # Title: cat("\nTitle:\n ") cat(object@title, "\n") # Call: cat("\nCall:\n ") cat(paste(deparse(object@call), sep = "\n", collapse = "\n"), "\n") # Mean Equation: cat("\nMean and Variance Equation:\n ") print(object@formula) # Conditional Distribution: cat("\nConditional Distribution:\n ") cat(object@fit$params$cond.dist, "\n") # Coefficients: cat("\nCoefficient(s):\n") digits = max(6, getOption("digits") - 4) print.default(format(object@fit$par, digits = digits), print.gap = 2, quote = FALSE) # Error Analysis: digits = max(4, getOption("digits") - 5) fit = object@fit # fit$cvar = solve(fit$hessian) # fit$se.coef = sqrt(diag(fit$cvar)) # fit$tval = fit$coef/fit$se.coef # fit$matcoef = cbind(fit$coef, fit$se.coef, # fit$tval, 2*(1-pnorm(abs(fit$tval)))) # dimnames(fit$matcoef) = list(names(fit$tval), c(" Estimate", # " Std. Error", " t value", "Pr(>|t|)")) signif.stars = getOption("show.signif.stars") cat("\nError Analysis:\n") printCoefmat(fit$matcoef, digits = digits, signif.stars = signif.stars) # Log Likelihood: cat("\nLog Likelihood:\n ") LLH = object@fit$value N = NROW(object@data$Data) cat(LLH, " normalized: ", LLH/N, "\n") # Lagged Series: .tslagGarch = function (x, k = 1) { ans = NULL for (i in k) ans = cbind(ans, .tslag1Garch(x, i)) indexes = (1:length(ans[, 1]))[!is.na(apply(ans, 1, sum))] ans = ans[indexes, ] if (length(k) == 1) ans = as.vector(ans) ans } .tslag1Garch = function (x, k) { c(rep(NA, times = k), x[1:(length(x) - k)]) } # Statistical Tests: cat("\nStandadized Residuals Tests:\n") r.s = object@residuals/object@sigma.t ans = NULL # Normality Tests: jbtest = jarqueberaTest(r.s)@test ans = rbind(ans, c(jbtest[1], jbtest[2])) if (length(r.s) < 5000) { swtest = shapiro.test(r.s) if (swtest[2] < 2.6e-16) swtest[2] = 0 ans = rbind(ans, c(swtest[1], swtest[2])) } else { ans = rbind(ans, c(NA, NA)) } # Ljung-Box Tests: box10 = Box.test(r.s, lag = 10, type = "Ljung-Box") box15 = Box.test(r.s, lag = 15, type = "Ljung-Box") box20 = Box.test(r.s, lag = 20, type = "Ljung-Box") ans = rbind(ans, c(box10[1], box10[3])) ans = rbind(ans, c(box15[1], box15[3])) ans = rbind(ans, c(box20[1], box20[3])) box10 = Box.test(r.s^2, lag = 10, type = "Ljung-Box") box15 = Box.test(r.s^2, lag = 15, type = "Ljung-Box") box20 = Box.test(r.s^2, lag = 20, type = "Ljung-Box") ans = rbind(ans, c(box10[1], box10[3])) ans = rbind(ans, c(box15[1], box15[3])) ans = rbind(ans, c(box20[1], box20[3])) # Ljung-Box Tests - tslag required lag.n = 12 x.s = as.matrix(r.s)^2 n = nrow(x.s) tmp.x = .tslagGarch(x.s[, 1], 1:lag.n) tmp.y = x.s[(lag.n + 1):n, 1] fit = lm(tmp.y ~ tmp.x) stat = (n-lag.n) * summary.lm(fit)$r.squared ans = rbind(ans, c(stat, p.value = 1 - pchisq(stat, lag.n)) ) # Add Names: rownames(ans) = c( " Jarque-Bera Test R Chi^2 ", " Shapiro-Wilk Test R W ", " Ljung-Box Test R Q(10) ", " Ljung-Box Test R Q(15) ", " Ljung-Box Test R Q(20) ", " Ljung-Box Test R^2 Q(10) ", " Ljung-Box Test R^2 Q(15) ", " Ljung-Box Test R^2 Q(20) ", " LM Arch Test R TR^2 ") colnames(ans) = c("Statistic", "p-Value") print(ans) # Information Criterion Statistics: cat("\nInformation Criterion Statistics:\n") print(object@fit$ics) # Description: cat("\nDescription:\n ") cat(object@description, "\n") # Return Value: cat("\n") invisible() }) ################################################################################