# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2007, Diethelm Wuertz, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: ADDITIONAL PLOTS: # gpdTailPlot Plots Tail Estimate From GPD Model # gpdQuantPlot Plots of GPD Tail Estimate of a High Quantile # gpdShapePlot Plots for GPD Shape Parameter # gpdQPlot Adds Quantile Estimates to plot.gpd # gpdSfallPlot Adds Expected Shortfall Estimates to a GPD Plot # gpdRiskMeasures Calculates Quantiles and Expected Shortfalls # FUNCTION: NEW STYLE FUNCTIONS: # tailPlot Plots GPD VaR and Expected Shortfall risk # tailSlider Interactive view to find proper threshold value # tailRiskMeasures Calculates VaR and Expected Shortfall risks ################################################################################ test.gpdTailPlot = function() { # Artificial Data Set: x = gpdSim(seed = 1985) fit = gpdFit(x) par(mfrow = c(1, 1)) par(ask = FALSE) gpdTailPlot(fit) # Danish Fire Claims: x = as.timeSeries(data(danishClaims)) fit = gpdFit(x) par(mfrow = c(1, 1)) par(ask = FALSE) gpdTailPlot(fit) # Return Value: return() } # ------------------------------------------------------------------------------ test.gpdQuantPlot = function() { # Artificial Data Set: x = gpdSim(seed = 1985) par(mfrow = c(1, 1)) par(ask = FALSE) gpdQuantPlot(x) # Danish Fire Claims: x = as.timeSeries(data(danishClaims)) fit = gpdFit(x) par(mfrow = c(1, 1)) par(ask = FALSE) gpdQuantPlot(x) # Return Value: return() } # ------------------------------------------------------------------------------ test.gpdShapePlot = function() { # Artificial Data Set: x = gpdSim(seed = 1985) par(mfrow = c(1, 1)) par(ask = FALSE) gpdShapePlot(x) # Danish Fire Claims: x = as.timeSeries(data(danishClaims)) par(mfrow = c(1, 1)) par(ask = FALSE) gpdShapePlot(x) # Return Value: return() } # ------------------------------------------------------------------------------ test.gpdQPlot = function() { # Artificial Data Set: x = gpdSim(seed = 1985) fit = gpdFit(x) tp = gpdTailPlot(fit) gpdQPlot(tp) # Danish Fire Claims: x = as.timeSeries(data(danishClaims)) fit = gpdFit(x, u =10) tp = gpdTailPlot(fit) gpdQPlot(tp) # Return Value: return() } # ------------------------------------------------------------------------------ test.gpdSfallPlot = function() { # Artificial Data Set: x = gpdSim(seed = 1985) fit = gpdFit(x) ### tp = gpdTailPlot(fit) # CHECK ### gpdSfallPlot(tp) # CHECK # Danish Fire Claims: x = as.timeSeries(data(danishClaims)) fit = gpdFit(as.vector(x), u =10) ### tp = gpdTailPlot(fit) # CHECK ### gpdSfallPlot(tp) # CHECK # Return Value: return() } # ------------------------------------------------------------------------------ test.tailPlot = function() { # Danish Fire Claims: x = as.timeSeries(data(danishClaims)) fit = gpdFit(x, u = 10) ### tailPlot(fit) # CHECK # Return Value: return() } # ------------------------------------------------------------------------------ test.tailSlider = function() { # Danish Fire Claims: # x = as.timeSeries(data(danishClaims)) # tailSlider(x) NA # Return Value: return() } # ------------------------------------------------------------------------------ test.tailRisk = function() { # Danish Fire Claims: x = as.timeSeries(data(danishClaims)) fit = gpdFit(x, u = 10) tailRisk(fit) # Return Value: return() } ################################################################################