# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2007, Diethelm Wuertz, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: MEAN EXCESS FUNCTION FIT: # normMeanExcessFit Fits mean excesses to a normal density # ghMeanExcessFit Fits mean excesses to a generalized hyperbolic density # hypMeanExcessFit Fits mean excesses to a hyperbolic density # nigMeanExcessFit Fits mean excesses to a normal inverse Gaussian density ################################################################################ normMeanExcessFit = function(x, doplot = TRUE, trace = TRUE, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits mean excesses with a normal density # Arguments: # x - an univariate 'timeSeries' object # doplot - alogical flag. Should a mean excess plot be dispalyed? # ... - optional parameters passed to the function mePlot() # FUNCTION: # Settings: x = as.vector(x) U = mePlot(x, doplot = doplot, ...)[, 1] U = U[!is.na(U)] U = seq(min(U), max(U), length = 51) if(trace) print(U) # Fit Parameters: fit = nFit(x, doplot = FALSE, trace = FALSE) param = fit@fit$estimate # Compute Mean Excess Function: func<-function(x, u, param) { (x-u)*dnorm(x, param[1], param[2])} Y = NULL for (u in U) { y1 = integrate(func, lower = u, upper = Inf, u = u, param = param)[[1]] y2 = integrate(dnorm, lower = u, upper = Inf, mean = param[1], sd = param[2])[[1]] Y = c(Y, y1/y2) } # Plot: if (doplot) lines(U, Y, lwd = 2) # Result: result = data.frame(threshold = U, me = Y) attr(result, "control")<-fit # Return Value: invisible(result) } # ------------------------------------------------------------------------------ ghMeanExcessFit = function(x, doplot = TRUE, trace = TRUE, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits mean excesses with a hyperbolic density # Arguments: # x - an univariate 'timeSeries' object # doplot - alogical flag. Should a mean excess plot be dispalyed? # ... - optional parameters passed to the function mePlot() # FUNCTION: # Settings: x = as.vector(x) U = mePlot(x, doplot = doplot, ...)[, 1] U = U[!is.na(U)] U = seq(min(U), max(U), length = 51) if(trace) print(U) # Fit Parameters: fit = ghFit(x, doplot = FALSE, trace = FALSE) param = fit@fit$estimate # Compute Mean Excess Function: func<-function(x, u, param) { (x-u)*dgh(x, param[1], param[2], param[3], param[4], param[5]) } Y = NULL for (u in U) { y1 = integrate(func, lower = u, upper = Inf, u = u, param = param)[[1]] if (trace) print(c(u, y1)) y2 = integrate(dgh, lower = u, upper = Inf, alpha = param[1], beta = param[2], delta = param[3], mu = param[4], lambda = param[5])[[1]] if (trace) print(c(u, y2)) Y = c(Y, y1/y2) } # Plot: if (doplot) lines(U, Y, lwd = 2) # Result: result = data.frame(threshold = U, me = Y) attr(result, "control")<-fit # Return Value: invisible(result) } # ------------------------------------------------------------------------------ hypMeanExcessFit = function(x, doplot = TRUE, trace = TRUE, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits mean excesses with a hyperbolic density # Arguments: # x - an univariate 'timeSeries' object # doplot - alogical flag. Should a mean excess plot be dispalyed? # ... - optional parameters passed to the function mePlot() # FUNCTION: # Settings: x = as.vector(x) U = mePlot(x, doplot = FALSE)[, 1] U = U[!is.na(U)] U = seq(min(U), max(U), length = 51) # Fit Parameters: fit = hypFit(x, doplot = FALSE, trace = FALSE) param = fit@fit$estimate # Compute Mean Excess Function: func<-function(x, u, param) { (x-u)*dhyp(x, param[1], param[2], param[3], param[4])} Y = NULL for (u in U) { y = integrate(func, lower = u, upper = Inf, u = u, param = param)[[1]] Y = c(Y, y) } # Plot: if (doplot) lines(U, Y, lwd = 2) # Result: result = data.frame(threshold = U, me = Y) attr(result, "control")<-fit # Return Value: invisible(result) } # ------------------------------------------------------------------------------ nigMeanExcessFit = function(x, doplot = TRUE, trace = TRUE, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits mean excesses with a genaralized hyperbolic density # Arguments: # x - an univariate 'timeSeries' object # doplot - alogical flag. Should a mean excess plot be dispalyed? # ... - optional parameters passed to the function mePlot() # FUNCTION: # Settings: x = as.vector(x) U = mePlot(x, doplot = doplot, ...)[, 1] U = U[!is.na(U)] U = seq(min(U), max(U), length = 51) if(trace) print(U) # Fit Parameters: fit = nigFit(x, doplot = FALSE, trace = FALSE, scale = FALSE) param = fit@fit$estimate # Compute Mean Excess Function: func<-function(x, u, param) { (x-u)*dnig(x, param[1], param[2], param[3], param[4]) } Y = NULL for (u in U) { y1 = integrate(func, lower = u, upper = Inf, u = u, param = param)[[1]] if (trace) print(c(u, y1)) y2 = integrate(dnig, lower = u, upper = Inf, alpha = param[1], beta = param[2], delta = param[3], mu = param[4])[[1]] if (trace) print(c(u, y2)) Y = c(Y, y1/y2) } # Plot: if (doplot) lines(U, Y, lwd = 2) # Result: result = data.frame(threshold = U, me = Y) attr(result, "control")<-fit # Return Value: invisible(result) } # ------------------------------------------------------------------------------ ghtMeanExcessFit = function(x, doplot = TRUE, trace = TRUE, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits mean excesses with a genaralized hyperbolic density # Arguments: # x - an univariate 'timeSeries' object # doplot - alogical flag. Should a mean excess plot be dispalyed? # ... - optional parameters passed to the function mePlot() # FUNCTION: # Settings: x = as.vector(x) U = mePlot(x, doplot = doplot, ...)[, 1] U = U[!is.na(U)] U = seq(min(U), max(U), length = 51) if(trace) print(U) # Fit Parameters: fit = ghtFit(x, doplot = FALSE, trace = FALSE, scale = FALSE) param = fit@fit$estimate # Compute Mean Excess Function: func<-function(x, u, param) { (x-u) * dght(x, param[1], param[2], param[3], param[4]) } Y = NULL for (u in U) { y1 = integrate(func, lower = u, upper = Inf, u = u, param = param)[[1]] if (trace) print(c(u, y1)) y2 = integrate(dght, lower = u, upper = Inf, beta = param[1], delta = param[2], mu = param[3], nu = param[4])[[1]] if (trace) print(c(u, y2)) Y = c(Y, y1/y2) } # Plot: if (doplot) lines(U, Y, lwd = 2) # Result: result = data.frame(threshold = U, me = Y) attr(result, "control")<-fit # Return Value: invisible(result) } ################################################################################