# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2007, Diethelm Wuertz, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: ELLIPTICAL COPULAE PARAMETER FITTING: # ellipticalCopulaSim Simulates bivariate elliptical copula # ellipticalCopulaFit Fits the paramter of an elliptical copula ################################################################################ test.copulaSim = function() { # Arguments: # ellipticalCopulaSim(n, rho = 0.75, param = NULL, # type = c("norm", "cauchy", "t")) # Normal Copula: rho = 0.5 R = ellipticalCopulaSim(n = 1000, rho = rho) R[1:10, ] plot(R, pch = 19) # Cauchy Copula: rho = runif(1, -1, 1) R = ellipticalCopulaSim(n = 100, rho = rho, type = "cauchy") R[1:10, ] plot(R, pch = 19) # Student-t Copula: rho = runif(1, -1, 1) nu = runif(1, 3, 20) print(c(rho, nu)) R = ellipticalCopulaSim(n = 1000, rho = rho, param = nu, type = "t") R[1:10, ] plot(R, pch = 19) # The remaining Copulae are not yet implemented ... # Return Value: return() } # ------------------------------------------------------------------------------ test.copulaFit = function() { # Arguments: # ellipticalCopulaFit(u, v = NULL, type = c("norm", "cauchy", "t"), ...) # Fit Normal Copula: rho = 0.5 R = ellipticalCopulaSim(n = 1000, rho = rho) fit = ellipticalCopulaFit(u = R[,1], v = R[,2]) fit rho - fit$par plot(c(-1,1), c(-1,1), xlab = "rho", ylab = "estimate", main = "Normal") for ( i in 1:100) { rho = runif(1, -1, 1) R = ellipticalCopulaSim(n = 1000, rho = rho) fit = ellipticalCopulaFit(R) points(rho, fit$par) print(c(rho-fit$par, fit$Rho-fit$par)) } # Fit Cauchy Copula: rho = runif(1, -1, 1) R = ellipticalCopulaSim(n = 100, rho = rho, type = "cauchy") ellipticalCopulaFit(R, type = "cauchy") rho plot(c(-1,1), c(-1,1), main = "Cauchy") for ( i in 1:100) { rho = runif(1, -1, 1) R = ellipticalCopulaSim(n = 1000, rho = rho, type = "cauchy") fit = ellipticalCopulaFit(R, type = "cauchy") points(rho, fit$par) print(c(rho-fit$par, fit$Rho-fit$par)) } # Fit Student-t Copula: rho = runif(1, -1, 1) nu = runif(1, 3, 20) print(c(rho, nu)) R = ellipticalCopulaSim(n = 1000, rho = rho, param = nu, type = "t") ellipticalCopulaFit(R, type = "t") plot(c(-1,1), c(-1,1), main = "Student-t") for ( i in 1:100) { rho = runif(1, -1, 1) nu = runif(1, 3, 20) R = ellipticalCopulaSim(n = 1000, rho = rho, param = nu, type = "t") fit = ellipticalCopulaFit(R, type = "t") points(rho, fit$par[1]) print(c(rho, nu, fit$par)) } # The remaining Copulae are not yet implemented ... # Return Value: return() } ################################################################################