# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2007, Diethelm Wuertz, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: EMPIRICAL COPULAE PROBABILIY: # pempiricalCopula Computes empirical copula probability # FUNCTION: EMPIRICAL COPULAE DENSITY: # dempiricalCopula Computes empirical copula density # FUNCTION: DEBYE FUNCTION: # .Debye Returns the value of the Debye function of order k # .Debye1 Returns the value of the Debye function of order 1 # FUNCTION: # .pmoCopula # .dmoCopula ################################################################################ ################################################################################ # FUNCTION: EMPIRICAL COPULAE PROBABILIY: # pempiricalCopula Computes empirical copula probability pempiricalCopula = function(u, v, N = 10) { # A function implemented by Diethelm Wuertz # Description # Computes the empirical copula probability # Source: # bouye02a.pdf # FUNCTION: # Settings: if (is.list(u)) { v = u[[2]] u = u[[1]] } if (is.matrix(u)) { v = u[, 1] u = u[, 2] } # Probability: p = q = (0:N)/N h = matrix(rep(0, times = (N+1)^2), N+1) for ( i in (0:N) ) { for ( j in (0:N) ) { z = Heaviside(u, p[i+1]) + Heaviside(v, q[j+1]) h[j+1, i+1] = length(z[z == 0]) } } h = h/length(u) # Return Value: list(x = p, y = q, z = h) } ################################################################################ # FUNCTION: EMPIRICAL COPULAE DENSITY: # dempiricalCopula Computes empirical copula density dempiricalCopula = function(u, v, N = 10) { # A function implemented by Diethelm Wuertz # Description # Computes the empirical copula probability # Source: # bouye02a.pdf # FUNCTION: # Settings: if (is.list(u)) { v = u[[2]] u = u[[1]] } if (is.matrix(u)) { v = u[, 1] u = u[, 2] } # Probability: ans = pempiricalCopula(u, v, N) X = ans$x Y = ans$y C = ans$z # Density: M = N+1 x = X[-1] - diff(X)/2 y = Y[-1] - diff(Y)/2 c = C[-1,-1]+C[-M,-M]-C[-1,-M]-C[-M,-1] # Return Value: list(x = x, y = y, z = c) } ################################################################################ # FUNCTION: DEBYE FUNCTION: # .Debye Returns the value of the Debye function of order k # .Debye1 .Debye = function(x, k = 1) { # A function implemented by Diethelm Wuertz # Description: # Returns the value of the Debye function of order k # Arguments: # x - a numeric value or vector # k - the order of the Debye function, a positive integer value # FUNCTION: # Check: if (!is.integer(k) | k <= 0) stop("k must be a positive integer") # Loop: D = NULL error = NULL for ( i in 1:length(x) ) { nextD = .Debye1(x[i],k) D = c(D, nextD[[1]]) error = c(error, nextD[[2]]) } # Add error attribute: attr(D, "error") = error # Return Value: D } # ------------------------------------------------------------------------------ .Debye1 = function(x, k = 1) { # A function implemented by Diethelm Wuertz # FUNCTION: # Function to be integrated: d = function(x, lambda) { x^lambda / ( exp(x) - 1 ) } # Integrate: u = abs(x) if (x == 0) { D = 1 error = 0 } else { ans = integrate(f = d, lower = 0, upper = u, lambda = k) D = k * ans[[1]] / u^k error = ans[[2]] } if (x < 0) { D = D + k*u/(k+1) } # Return Value: list(D = D, error = error) } ################################################################################ # FUNCTION: # .pmoCopula # .dmoCopula .pmoCopula = function(u = 0.5, v = u, alpha = NULL) { if (is.null(alpha)) alpha = c(0.5, 0.5) alpha1 = alpha[1] alpha2 = alpha[2] U = u^(1-alpha1) * v V = u * v^(1-alpha2) UV = cbind(U,V) apply(UV, 1, max) } # ------------------------------------------------------------------------------ .dmoCopula = function(u = 0.5, v = u, alpha = NULL) { if (is.null(alpha)) alpha = c(0.5, 0.5) alpha1 = alpha[1] alpha2 = alpha[2] U = u^(1-alpha1) * v V = u * v^(1-alpha2) UV = cbind(U,V) apply(UV, 1, max) } ################################################################################