# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2006, Diethelm Wuertz, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: DISTRIBUTIONAL TESTS: # ks2Test Performs a two sample Kolmogorov-Smirnov test # FUNCTION: LOCATION TESTS: # locationTest Performs locations tests on two samples # .tTest Unpaired t test for differences in mean # .kw2Test Kruskal-Wallis test for differences in locations # FUNCTION: VARIANCE TESTS: # varianceTest Performs variance tests on two samples # .varfTest F test for differences in variances # .bartlett2Test Bartlett's test for differences in variances # .fligner2Test Fligner-Killeen test for differences in variances # FUNCTION: SCALE TESTS: # scaleTest Performs scale tests on two samples # .ansariTest Ansari-Bradley test for differences in scale # .moodTest Mood test for differences in scale # dansariw Returns density of the Ansari W statistic # pansariw Returns probabilities of the Ansari W statistic # qansariw Returns quantiles of the Ansari W statistic # FUNCTION: CORRELATION TESTS: # correlationTest Performs correlation tests on two samples # .pearsonTest Pearson product moment correlation coefficient # .kendallTest Kendall's tau correlation test # .spearmanTest Spearman's rho correlation test ################################################################################ test.distributionTest = function() { # Data: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") X = rnorm(100) Y = rt(50, df = 3) # Two Sample Kolmogorov-Smirnov Test: TEST = ks2Test(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Return Value: return() } # ------------------------------------------------------------------------------ test.locationTests = function() { # Data: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") X = rnorm(100) Y = rt(50, df = 3) # Location t-Test: TEST = .tTest(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Location kw2-Test: TEST = .kw2Test(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Return Value: return() } # ------------------------------------------------------------------------------ test.varianceTests = function() { # Data: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") X = rnorm(100) Y = rt(50, df = 3) # Variance F-Test: TEST = .varfTest(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Variance Bartlett-Test: TEST = .bartlett2Test(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Variance Fligner-Test: TEST = .fligner2Test(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Return Value: return() } # ------------------------------------------------------------------------------ test.scaleTests = function() { # Data: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") X = rnorm(100) Y = rt(50, df = 3) # Scale Ansari-Test: TEST = .ansariTest(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Scale Mood-Test: TEST = .moodTest(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Return Value: return() } # ------------------------------------------------------------------------------ test.correlationTests = function() { # Data: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") X = rnorm(100) Y = rt(100, df = 3) # Correlation Pearson-Test: TEST = .pearsonTest(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Correlation Kendall-Test: TEST = .kendallTest(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Correlation Spearman-Test: TEST = .spearmanTest(X, Y) print(TEST) checkIdentical(as.character(class(TEST)), "fHTEST") # Return Value: return() } ################################################################################