# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2007, Diethelm Wuertz, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTIONS: STABLE DISTRIBUTION: # stableMode Computes stable mode # dstable Returns density for stable DF # pstable Returns probabilities for stable DF # qstable Returns quantiles for stable DF # rstable Returns random variates for stable DF # FUNCTION: STABLE SLIDERS: # stableSlider Displays stable distribution function ################################################################################ test.stableS0 = function() { if (FALSE) { # stable - Parameterization S0: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 1.8, beta = 0.3) print(test) checkTrue(mean(test[1:2]) == 1) # stable - Parameterization S0: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 1.2, beta = -0.3) print(test) checkTrue(mean(test[1:2]) == 1) # stable - Parameterization S0: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 0.6, beta = 0) print(test) checkTrue(mean(test[1:2]) == 1) } # Return Value: return() } # ------------------------------------------------------------------------------ test.stableS1 = function() { if (FALSE) { # stable - Parameterization S1: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 1.8, beta = 0.3, pm = 1) print(test) checkTrue(mean(test[1:2]) == 1) # stable - Parameterization S1: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 1.2, beta = -0.3, pm = 1) print(test) checkTrue(mean(test[1:2]) == 1) # stable - Parameterization S1: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 0.6, beta = 0, pm = 1) print(test) checkTrue(mean(test[1:2]) == 1) } # Return Value: return() } # ------------------------------------------------------------------------------ test.stableS2 = function() { if (FALSE) { # stable - Parameterization S2: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 1.8, beta = 0.3, pm = 2) print(test) checkTrue(mean(test[1:2]) == 1) # stable - Parameterization S2: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 1.2, beta = -0.3, pm = 2) print(test) checkTrue(mean(test[1:2]) == 1) # stable - Parameterization S2: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("stable", alpha = 0.6, beta = 0, pm = 2) print(test) checkTrue(mean(test[1:2]) == 1) } # Return Value: return() } # ------------------------------------------------------------------------------ test.stableSlider = function() { # Arguments ? # stableSlider() # Try: # stableSlider() NA # Return Value: return() } ################################################################################