# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2006, Diethelm Wuertz, GPL # Diethelm Wuertz # info@rmetrics.org # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: DESCRIPTION: # dgh Returns density for generalized hyperbolic DF # pgh Returns probability for generalized hyperbolic DF # qgh Returns quantiles for generalized hyperbolic DF # rgh Returns random variates for generalized hyperbolic DF # FUNCTION: DESCRIPTION: # dhyp Returns density for hyperbolic DF # phyp Returns probability for hyperbolic DF # qhyp Returns quantiles for hyperbolic DF # rhyp Returns random variates for hyperbolic DF # hypMode Computes the hyperbolic mode # FUNCTION: DESCRIPTION: # dnig Returns density for inverse Gaussian DF # pnig Returns probability for for inverse Gaussian DF # qnig Returns quantiles for for inverse Gaussian DF # rnig Returns random variates for inverse Gaussian DF # FUNCTION: DESCRIPTION: # hypSlider Displays hyperbolic distribution function # nigSlider Displays normal inverse Gausssian distribution function ################################################################################ test.gh = function() { # gh() Distribution: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("gh", alpha = 1.3, beta = 0.3, delta = 1.7, mu = 0.2, lambda = 0.8, n = 2000, robust = FALSE) print(test) checkTrue(mean(test) == 1) # Return Value: return() } # ------------------------------------------------------------------------------ test.hyp = function() { # hyp() Distribution - Parameterization 1: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("hyp", alpha = 1.2, beta = 0.2, delta = 1.9, mu = 0.1, pm = 1, n = 1000, robust = FALSE) print(test) checkTrue(mean(test) == 1) # hyp() Distribution - Parameterization 2: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("hyp", alpha = 0.9, beta = -0.3, delta = 1.4, mu = -0.1, pm = 2, n = 1000, robust = FALSE) print(test) checkTrue(mean(test) == 1) # hyp() Distribution - Parameterization 3: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") .distCheck("hyp", alpha = 0.9, beta = -0.3, delta = 1.4, mu = -0.1, pm = 3, n = 1000, robust = FALSE) print(test) checkTrue(mean(test) == 1) # hyp() Distribution - Parameterization 4: if (FALSE) { RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") .distCheck("hyp", alpha = 1.6, beta = -0.3, delta = 1.4, mu = 0.1, pm = 4, n = 1000, robust = FALSE) # CHECK print(test) checkTrue(mean(test) == 1) } # Return Value: return() } # ------------------------------------------------------------------------------ test.nig = function() { # nig() Distribution: RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion") set.seed(4711, kind = "Marsaglia-Multicarry") test = .distCheck("nig", alpha = 2.1, beta = 0.1, delta = 1.5, mu = -0.1, n = 1000, robust = FALSE) print(test) checkTrue(mean(test) == 1) # Return Value: return() } # ------------------------------------------------------------------------------ test.hypSlider = function() { # Arguments ? # hypSlider() # Try: # hypSlider() NA # Return Value: return() } # ------------------------------------------------------------------------------ test.nigSlider = function() { # Arguments ? # nigSlider # Try: # nigSlider() NA # Return Value: return() } ################################################################################