# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: DESCRIPTION: # tFit Fits parameters of a Student-t density ################################################################################ .x.save = NA tFit = function(x, df = 4, doplot = TRUE, span = "auto", trace = FALSE, title = NULL, description = NULL, ...) { # A function implemented by Diethelm Wuertz # Description: # Return Maximum log-likelihood estimated # Paramters for Student-t Distribution: # Note: # Function Calls: nlminb(), density() # Example: # tFit(rt(1000, df=4)) # FUNCTION: # Transform: x.orig = x x = as.vector(x) # Settings: CALL = match.call() # Log-likelihood Function: etmle = function(x, y = x, trace) { # Prevent from negative df's if (x[1] <= 0) x[1] = .x.save f = -sum(log(dt(y, x[1]))) # Print Iteration Path: if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Students df Estimate: ", x[1], "\n") } .x.save <<- x[1] f } # Minimization: r = nlm(f = etmle, p = c(df), y = x, trace = trace) # Optional Plot: if (doplot) { if (span == "auto") { df = r$estimate[1] span.min = qt(0.001, df) span.max = qt(0.999, df) span = seq(span.min, span.max, length = 100) } par(err = -1) z = density(x, n = 100, ...) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = dt(span, df = r$estimate[1]) ylim = log(c(min(y.points), max(y.points))) plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)", ...) title("STUDENT-T: Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") if (exists("grid")) grid() } # Add Title and Description: if (is.null(title)) title = "Student-t Parameter Estimation" if (is.null(description)) description = .description() # Fit: fit = list(estimate = c(df = r$estimate), minimum = -r$minimum, code = r$code, gradient = r$gradient) # Return Value: new("fDISTFIT", call = as.call(CALL), model = "Student-t Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = .description() ) } ################################################################################