# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: GENERALIZED DISTRIBUTION: # ghFit Fits parameters of a generalized hyperbolic density ################################################################################ ghFit <- function(x, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = 1, scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE, title = NULL, description = NULL, ...) { # A function implemented by Diethelm Wuertz # Description: # Fits parameters of a generalized hyperbolic density # FUNCTION: # Transform: x.orig = x x = as.vector(x) if (scale) { SD = sd(x) x = x / SD } # Settings: CALL = match.call() # Log-likelihood Function: eghmle = function(x, y = x, trace){ if (NA %in% x) return(1e99) if (abs(x[2]) >= x[1]) return(1e99) f = -sum(dgh(y, x[1], x[2], x[3], x[4], x[5], log = TRUE)) # Print Iteration Path: if (trace) { cat("\n Objective Function Value: ", -f) cat("\n Parameter Estimates: ", x, "\n") } f } # Minimization: r = # Variable Transformation and Minimization: eps = 1e-10 BIG = 1000 f = eghmle(x = c(alpha, beta, delta, mu, lambda), y = x, trace = FALSE) r = nlminb(start = c(alpha, beta, delta, mu, lambda), objective = eghmle, lower = c(eps, -BIG, eps, -BIG, -BIG), upper = BIG, y = x, trace = trace) # Result: if (scale) { r$par = r$par / c(SD, SD, 1/SD, 1/SD, 1) r$objective = eghmle(r$par, y = as.vector(x.orig), trace = trace) } # Optional Plot: if (doplot) { x = as.vector(x.orig) if (span == "auto") span = seq(min(x), max(x), length = 51) z = density(x, n = 100, ...) x = z$x[z$y > 0] y = z$y[z$y > 0] y.points = dnig(span, r$par[1], r$par[2], r$par[3], r$par[4]) ylim = log(c(min(y.points), max(y.points))) plot(x, log(y), xlim = c(span[1], span[length(span)]), ylim = ylim, type = "p", xlab = "x", ylab = "log f(x)", ...) title("GH Parameter Estimation") lines(x = span, y = log(y.points), col = "steelblue") } # Add Title and Description: if (is.null(title)) title = "Generalized Hyperbolic Parameter Estimation" if (is.null(description)) description = .description() # Fit: fit = list(estimate = r$par, minimum = -r$objective, code = r$convergence) # Return Value: new("fDISTFIT", call = as.call(CALL), model = "Generalized Hyperbolic Distribution", data = as.data.frame(x.orig), fit = fit, title = as.character(title), description = .description() ) } ################################################################################