# This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received A copy of the GNU Library General # Public License along with this library; if not, write to the # Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307 USA # Copyrights (C) # for this R-port: # 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL # Diethelm Wuertz # www.rmetrics.org # for the code accessed (or partly included) from other R-ports: # see R's copyright and license files # for the code accessed (or partly included) from contributed R-ports # and other sources # see Rmetrics's copyright file ################################################################################ # FUNCTION: BASIC STATISTICS: # basicStats Returns a basic statistics summary ################################################################################ basicStats = function(x, ci = 0.95) { # A function implemented by Diethelm Wuertz # Description: # Calculates Basic Statistics # Arguments: # x - an object which can be transformed by the function # as.matrix() into an object of class matrix. # ci - a numeric value setting the confidence interval. # Value: # a two-column data frame, where the first column takes the # value of the statistics, and the second its name, e.g. # "nobs", "NAs", "Minimum", "Maximum", "1. Quartile", # "3. Quartile", "Mean", "Median", "Sum", "SE Mean", # "LCL Mean", "UCL Mean", "Variance", "Stdev", "Skewness", # "Kurtosis") # FUNCTION: # Univariate/Multivariate: y = as.matrix(x) # Handle Column Names: if (is.null(colnames(y))) { Dim = dim(y)[2] if (Dim == 1) { colnames(y) = paste(substitute(x), collapse = ".") } else if (Dim > 1) { colnames(y) = paste(paste(substitute(x), collapse = ""), 1:Dim, sep = "") } } # Internal Function - CL Levels: cl.vals = function(x, ci) { x = x[!is.na(x)] n = length(x) if(n <= 1) return(c(NA, NA)) se.mean = sqrt(var(x)/n) t.val = qt((1 - ci)/2, n - 1) mn = mean(x) lcl = mn + se.mean * t.val ucl = mn - se.mean * t.val c(lcl, ucl) } # Basic Statistics: nColumns = dim(y)[2] ans = NULL for (i in 1:nColumns) { X = y[, i] # Observations: X.length = length(X) X = X[!is.na(X)] X.na = X.length - length(X) # Basic Statistics: z = c( X.length, X.na, min(X), max(X), as.numeric(quantile(X, prob = 0.25, na.rm = TRUE)), as.numeric(quantile(X, prob = 0.75, na.rm = TRUE)), mean(X), median(X), sum(X), sqrt(var(X)/length(X)), cl.vals(X, ci)[1], cl.vals(X, ci)[2], var(X), sqrt(var(X)), skewness(X), kurtosis(X) ) # Row Names: znames = c( "nobs", "NAs", "Minimum", "Maximum", "1. Quartile", "3. Quartile", "Mean", "Median", "Sum", "SE Mean", "LCL Mean", "UCL Mean", "Variance", "Stdev", "Skewness", "Kurtosis") # Output as data.frame result = matrix(z, ncol = 1) row.names(result) = znames ans = cbind(ans, result) } # Column Names: colnames(ans) = colnames(y) # Return Value: data.frame(round(ans, digits = 6)) } ################################################################################