
Rdonlp2 - an R interface to DONLP2

Ryuichi Tamura(ry.tamura @ gmail.com)

June 7, 2007(Version 0.3-1)

Contents

1 Abount This Package 1

2 Problem Definition 2
2.1 R function donlp2() . 2

3 Details 4
3.1 Initial Values . 4
3.2 Objective Function and its Gradients 4
3.3 Bounds and Equality Constraints 4
3.4 Linear Constraints . 5
3.5 Nonlinear Constraints and its Gradients 5
3.6 Numerical Gradients . 5
3.7 Control Variables . 6

4 Information during the Optimization 7
4.1 Tag list . 8

5 Value from donlp2() 10
5.1 The termination Reason . 10

6 Examples 11
6.1 examples/simple.c: linear constraint 11
6.2 examples/simple2.c: nonlinear constraint 13
6.3 example/hs211.c . 14

7 Bugs 17

8 Copyright 17

1 Abount This Package

Rdonlp2 is an R package to use Peter Spellucci’s DONLP2 from R. DONLP2
is the copyrighted software written by Peter Spellucci for solving nonlinear pro-
gramming problems.

DONLP2 is available from:

� http://plato.la.asu.edu/donlp2.html

1

Rdonlp2 is a wrapper for ANSI-C version of DONLP2(also called DONLP3):

� http://plato.asu.edu/ftp/donlp2/donlp2_intv_dyn.tar.gz

Current Rdonlp2 package is available from:

� http://arumat.net/Rdonlp2/Rdonlp2_0.3-1.zip(Windows Binary)

� http://arumat.net/Rdonlp2/Rdonlp2_0.3-1_R_i386-apple-darwin8.
8.1.tar.gz(OSX Universal Binary)

� http://arumat.net/Rdonlp2/Rdonlp2_0.3-1.tar.gz(Source File)

Since Rdonlp2 is simply wrapper program, user is required to refer PDF manual
included in donlp2_intv_dyn.tar.gz for the detail of the algorithm.

As for condition of use, Please refer Section8.

2 Problem Definition

R Package Rdonlp2 solves following nonlinear minimization problem with linear,
nonlinear constraints as well as parameter bounds:

min
x

f(x) subject to x ∈ S

S ∈ { x ∈ Rn,

xl ≤ x ≤ xu,

bl ≤ Ax ≤ bu,

cl ≤ c(x) ≤ cu },

where, f(x) is a continuous function, xl, xu are bounds for parameters(x), bl, bu

are bounds for linear combinations Ax(linear constraints), and cl, cu are bounds
for nonlinear function c(x)(nonlinear constraints). To describe equality con-
straint or parameter constancy, let lower and upper bounds for constraint be
equal.

2.1 R function donlp2()

Rdonlp provides single function for this problem:

donlp2 <- function(par, fn,
par.upper=rep(+Inf, length(par)),
par.lower=rep(-Inf, length(par)),

A = NULL,
lin.upper=rep(+Inf, length(par)),
lin.lower=rep(-Inf, length(par)),

nlin = list(),
nlin.upper=rep(+Inf, length(nlin)),
nlin.lower=rep(-Inf, length(nlin)),

control=donlp2.control(),
control.fun=function(lst){return(TRUE)},
env=.GlobalEnv, name="Rdonlp2")

2

where,

fn - the objective function to be minimized. Currently, fn must take only
one argument, and the parameter vector(par) will be passed to fn during
the optimization. The first element of return value must be the evaluated
value.

par - parameter vector(vector object)

par.upper, par.lower - upper and lower bounds for parameter vector, re-
spectively. Their length must equal to length(par). If some elements are
unbounded, specify +Inf or -Inf explicitly.

A - the matrix object that represents linear constraints. Its columns must be
equal to length(par), and its rows must be equal to the number of linear
constraints.

lin.upper, lin.lower - upper and lower bounds for linear constraints, re-
spectively. Their length must equal to the number of linear constraints.
If some elements are unbounded, specify +Inf or -Inf explicitly.

nlin - list object whose elements are functions that represents nonlinear con-
straints. rule for argument and return value is the same as fn, i.e., these
functions take only one arugument(par), and return a vector object whose
first element is the evaluated value.

lin.upper, lin.lower - upper and lower bounds for nonlinear constraints,
respectively. Their length must equal to length(nlin). If some elements
are unbounded, specify +Inf or -Inf explicitly.

control - control parameters that defines the behavior of DONLP2. See below
for details.

control.fun - donlp2() reports a group of optimization parameters in ev-
ery iteration(see below for details). This (read-only) information can be
available within control.fun(), in which user can decide whether the op-
timization should be iterrupted. Set its return value to FALSE to interrupt
donlp2().

env - the environment in which objective, constraint, control functions are
evaluated.

name - an character object that specify file name(without extension) of out-
put file. DONLP2 can output following 2 files(name.pro and name.mes)
in working directory which contain detailed information during the opti-
mization.

� name.pro: the results of optimization and other information during
the optimazation will be written. the latter depends on the values of
te0,te1,te2,te3.

� name.mes: other message from DONLP2 (warnings for ill-conditions,
etc) will be written. This will be helpful if your R code does not work
correctly.

3

3 Details

3.1 Initial Values

Although intial values(given to par) should be carefully determined by user,
DONLP2 has the feature to correct initial values automatically that violate
given constraints.

3.2 Objective Function and its Gradients

Objective function should be implemented so that parameter vector is the only
argument and the first element of return value is numeric. Typically, it looks
like:

objective.fun <- function(par){
calculation with par, and
results are stored to ans
:
ans # return value

}

:

ret <- donlp2(par=par, fn=objective.fun,)

User can implement gradient function to improve accuracy and efficiency.
Gradient function should be implement such that parameter vector is the only
argument and return value is vector of length equal to length(par). Then,
assign it to the attibute gr of objective function:

par is vector of length n
grad.fun <- function(par){

c(v1, v2, ..., vn)
}
assign grad.fun to objective.fun's gr attribute
attr(objective.fn, "gr") <- grad.fun

3.3 Bounds and Equality Constraints

Bounds for parameter, linear and nonlinear constraints are given as vector of ap-
propriate length(par.upper,par.lower,lin.upper,lin.lower,nlin.upper,nlin.lower).
If some parameter or constraints are bounded from below (above), then specify
+Inf(-Inf), respectively.

Set upper and lower bounds to be equal if equality constraint is needed.

par[1]<0, 0<par[2]<1, par[3]>1
par.lower <- c(-Inf, 0, 1)
par.upper <- c(0, 1, +Inf)

two linear constraints on two parameters
(1) par[1]+par[2]=0

4

(2) par[1]-2*par[2]+10>0
lin.lower <- c(0, -10)
lin.upper <- c(0, +Inf)

3.4 Linear Constraints

Bounds arguments and the coefficient matrix A represents the linear constraints.
Every row of A stands for linear combination of parameters:

two linear constraints on two parameters
(1) par[1]+par[2]=0
(2) par[1]-2*par[2]+10>0
lin.lower <- c(0, -10)
lin.upper <- c(0, +Inf)

A = rbind(c(1, 1), # 1st linear compination
c(1,-2)) # 2nd linear combination

3.5 Nonlinear Constraints and its Gradients

Nonlinear constraints are represented as their bounds given to nlin.upper and
nlin.lower, and user-defined function(and gradients). The way to implement
function and gradients are the same as objective function and its gradients(see
Section 3.2):

Nonlinear constraints: 1 constraint on 2 parameters
par[1]*par[2] = 1
nlcon1 <- function(par){
par[1]*par[2]

}
nlcon1.gr <- function(par){
c(par[2], par[1])

}
attr(nlcon1, "gr")<-nlcon1.gr

nlin.upper = c(1)
nlin.lower = c(1)
:
ret <- donlp2(par, fn,

nlin=list(nlcon1),
nlin.upper=nlin.upper,nlin.lower=nlin.lower,.....)

All the nonlinear constraint function are collected in a list(nlin).

3.6 Numerical Gradients

User can omit the implementation of gradients. In this case one of 3 algorithm
fro numerical differentiation provided by DONLP2 will be performed. If there
are n parameters,

1. the forward difference: requires n additional evaluations of function(difftype=1).

5

2. the central difference: requires 2n additional evaluations of function(difftype=2).

3. a sixth order approximation computing a Richardson extrapolation of the
three symmetric difference: requires 6n additional evaluations of func-
tion(difftype=3).

By default, Rdonlp2 uses 3rd algorithm(most acculate, but quite costly). User
can change this by the control variable(below) difftype.

Currently, if user want to use analytical gradients, he must implement all of
the gradients for both objective function and nonlinear constraint functions. If
one of them are not implemented, Rdonlp2 gives up using any gradient function
and uses numerical method instead.

3.7 Control Variables

User can control the behavior of donlp2() by donlp2.control(). donlp2.control()returns
a group of default control parameters as list object, so user change some of them
by giving tag=value pairs as arguments. Currently following tags(control vari-
ables) are available (values in () are the defaults).

� Settings

– iterma (4000) - maximum number of iterations

– nstep (20) - maximum number of tries in the backtracking allowed.

– fnscale(1) - set -1 for maximization instead of minimization. values
other than 1,-1 are not recommended.

� Tunings and erfomance of the optmization

– tau0 (1.0) - the positive amount how much any constaint other than
abound can be violated. A small tau0 diminishes the efficiency of
DONLP2, while a large tau0 may degarde the reliability of the code.

– tau (0.1) - gives a weight between descent for fn and infeasibility
and is also used as a safety parameter for chosing the penalty weigths.
It can be chosen larger zero at will, but useful values are between 0.1
and 1. The smaller tau, the more may fn be scaled down. Tau is
also used as an additive increase for the penalty-weights. Therefore it
should not be chosen too large, since that degrades the performance.

– del0 (1.0) - The positive amount by which constraints are considered
binding. If too small, the indentification of correct sets of binding
constraints may be delayed. If too large, DONLP2 will escape to the
full regularlized SQP method(quite costly). Good values are in [0.01,
1.0]

� Termination criteria

– epsx(1e-5) - successful temination is indicated if the Kuhn-Tucker
criteria are satisfied within the value.

– delmin(0.1*del0) - constraints are considered as sufficiently satisfied
if absolute values of their violation are less than the value.

– epsdif(1e-8) - relative precision in the gradients.

6

– nreset.multiplier (1) - maximum number of steps (nreset.multiplier
times n) until a “restart” of the accumulated quasi-newton-update is
tried. Value should be integer between 1 and 4.

� Numerical differentiation

– difftype (3) - See Section3.6.

– taubnd (0.1) - The positive amount by which bounds may be violated
if numerical differention is used.

– epsfcn (1e-16) - relative precision of the function evaluation routine.

– hessian (FALSE) - if TRUE, caliculate numeric Hessian matrix evalu-
ated at the optimum by numerical differentiation specified in difftype.

� Ouputs on console or files

– report(FALSE) - if TRUE, a list object which contains detailed infor-
mation will be passed to control.fun(). See Section4.1.

– rep.freq(1) - the frequency of report. the report will be passed to
control.fun every rep.freq iterations.

– te0 (TRUE) - if TRUE one-line-output for every step is printed on R
console.

– te1 (FALSE) - if TRUE post-mortem-dump of accumlated information
is printed on R console. Note in Rdonlp2 the same information will
be passed to control.fun()(See Section4).

– te2 (FALSE) - if TRUE, more detailed information is “pretty-printed”
on R console.

– te3 (FALSE) - if TRUE, and output file is specified in donlp2, also
print the gradients and Newton-Raphson update in upper trianglar
matrix in the .pro file.

– silent (FALSE) - if TRUE, donlp2() runs quietly, i.e. nothing is
output to R console and .pro, .mes files are never created even if
you specify file name in the name argument of donlp2().

– intakt (TRUE) - if TRUE, various information(depends on te0,te1,te2)
from current iteration step is output to R console.

Some of parameteters listed above are not well documented in this tuto-
rial. Please refer the original PDF manual included in DONLP distribution for
details.

4 Information during the Optimization

User may want to know what happens during the optimation, and if some
parameters are ’undesirable’ he may stop the execution. Rdonlp2 provides
the way to access the information via control.fun(lst). On each iteran-
tion, 35 parameters that tell us how the optimization is working are passed to
control.fun(lst). The last four parameters are not reported until the opti-
mization has finished. Parameters are collected into single list object, so user

7

can easily access some of them by specifying the tags. Complete tag list is given
Section 4.1.

control.fun() should return TRUE if user want to continue and FALSE if
user want to interrupt.

Example 1
keep track of current lagrange multiplier values
mycontrol <- function(lst){
print(lst$u)
TRUE # return TRUE to continue execution
}

tell donlp2 to use mycontrol()
donlp2(.....,control.fun=mycontrol,....)

Example 2(useless example)
force to terminate optimization after 10 iterations
mycontrol2 <- function(lst){
lst$step.nr <= 10 # return FALSE when step.nr>11

}
tell donlp2 to use mycontrol2()
donlp2(.....,control.fun=mycontrol2,....)

4.1 Tag list

Some of tags listed here are not well documented in this tutorial. Please refer
the original PDF manual included in DONLP distribution for details.

� par - current value of parameter vector.

� u - current value of langrange multipliers.

� w - current value of penalty terms.

� gradf - current gradient vector.

� step.nr - step number(total number of iterations when finished).

� fx - current value of fn.

� scf - scaling of fn.

� psi - the weighted penalty term.

� upsi - the unweighted penalty term(L1 norm of constraint vector).

� del.k.1 - bound for currently active constraints.

� b2n0 - weighted L2 norm of projected gradients.

� b2n - L2 norm of gradients based on del.k.1

� nr - number of binding constraints.

� sing - value other than -1 indicates working set is singular

8

� umin - infinity norm of negative part of inequalities multipliers.

� not.used - always 0(curretnly not used).

� cond.r - condition number of diagonal part of qr decomposition of nor-
malized gradients of binding constraints.

� cond.h - condition number of diagonal of cholesky factor of updated full
Hessian.

� scf0 - the relative damping of tangential component if upsi > tau0/2.

� xnorm - L2 norm of par.

� dnorm - unscaled L2 norm of d, correction from eqp/qp subproblem.

� phase -

– -1: infeasibility improvement phase.

– 0: initial optimization.

– 1: binding constraints unchanged

– 2: d small, maratos correction in use

� c.k - number of decreases of penalty weights

� wmax - infinity norm of weights

� sig.k - stepsize from unidimensional minimization(backtracking).

� cfincr - number of objective function evaluations for stepsize algorithm.

� dirder - scaled directional derivative of penalty function along d.

� dscal - scaling factor for d.

� cosphi - cosine of arc between d and previous d.

� violis - number of constraints not binding at par but hit during line
search.

� hesstype - type of update for Hessian:

– 1: normal P&M-BFGS update

– 0: update suppressed

– -1: restart with scaled unit matrix

– 2: standard BFGS

– 3: BFGS modified by Powell’s Device

� modbfgs - modification factor for damping the projector int the BFGS or
pantoja-mayne update.

� modnr -modification factor for damping the quasi-newton-relation in BFGS.

� qpterm -

9

– 0: if sing=-1: temination indicator of the QP solver

– 1: successful

– -1: tau becomes larger than tauqp without slack variables becoming
sufficiently small.

– -2: infeasible QP problem(theoretically impossible).

� tauqp - weight of slack variables in QP solver

� infeas - L1 norm of slack variables in QP solver

5 Value from donlp2()

The return value from donlp2() is the list object with 38(35+3; if hessian=FALSE(default))
or 39(35+4; if hessian=TRUE) elements with specified tags. The 35 pareameters
are identical to those listed in Section 4.1, and the rest parameters are:

� nr.update: the approximated newton-raphson updates in upper triangu-
lar matrix.

� hessian(if hessian=TRUE in donlp2.control()): numeric Hessian ma-
trix evaluated at the final value par.

� runtime: the elapsed time for the optimization.

� message: the termination message. See 5.1.

5.1 The termination Reason

When the optimization finishes, DONLP2 returns one of 19 messages listed
below. They are classified to following 3 groups, last of which user need to
decide the result is ’reasonable’ and accestable.

� 1.-10. : irregular case

� 11.-13.: successful

� 14.-19.: successful, but the precision may be very poor.

1. "constraint evaluation returns error with current point"

2. "objective evaluation returns error with current point"

3. "qpsolver: working set singular in dual extended qp "

4. "qpsolver: extended qp-problem seemingly infeasible "

5. "qpsolver: no descent for infeas from qp for tau=tau_max"

6. "qpsolver: on exit correction small, infeasible point"

7. "stepsizeselection: computed d from qp not a dir. of descent"

8. "more than maxit iteration steps"

10

9. "stepsizeselection: no acceptable stepsize in [sigsm,sigla]"

10. "small correction from qp, infeasible point"

11. "kt-conditions satisfied, no further correction computed"

12. "computed correction small, regular case "

13. "stepsizeselection: x almost feasible, dir. deriv. very small"

14. "kt-conditions (relaxed) satisfied, singular point"

15. "very slow primal progress, singular or illconditoned problem"

16. "more than nreset small corrections in x "

17. "correction from qp very small, almost feasible, singular "

18. "numsm small differences in penalty function,terminate"

19. "user required termination"

Some of messages listed above are not well documented in this tutorial.
Please refer the original PDF manual included in DONLP distribution for de-
tails.

6 Examples

Example C source files are included in the original DONLP2 distribution. In
this section, we rewrite some of them in R and show you how to code constrained
optimization problem with Rdonlp2.

6.1 examples/simple.c: linear constraint

min
x,y

x2 + y2 subject to 0 < x, y < 100, x + y = 1 (1)

with intial value: (x, y) = (−10, 10). Note that initial value is infeasible because
x = −10 /∈ (0, 100).

This problem has 2 parameters, 2 parameter bounds, 1 linear equality con-
straint. R script looks like:

p <- c(-10,10)
par.l <- c(0,0); par.u <- c(100,100)

lin.u <- 1; lin.l <- 1
A <- t(c(1,1))

fn <- function(x){
x[1]^2+x[2]^2

}
ret <- donlp2(p, fn, par.lower=par.l, par.upper=par.u,

A=A, lin.u=lin.u, lin.l=lin.l, name="simple")

11

Note that A must be represented as row vector(1x2) with single linear constraint.
Also we use numerical gradients.

Since control variables are all default values(specifically te0=TRUE and silent=FALSE),
running the script outputs detailed information on console:

1 fx= 0.000000e+00 upsi= 5.9e+01 b2n= -1.0e+00 umi= 0.0e+00 nr 1 si-1
2 fx= 0.000000e+00 upsi= 2.0e+01 b2n= -1.0e+00 umi= 0.0e+00 nr 2 si-1
3 fx= 1.000000e+00 upsi= 0.0e+00 b2n= 4.4e-16 umi= 0.0e+00 nr 2 si-1

simple

n= 2 nlin= 1 nonlin= 0

epsx= 1.000e-05 sigsm= 3.293e-10

startvalue
5.0000000e+01 1.0000000e+01

eps= 1.08e-19 tol= 0.00e+00 del0= 1.00e+00 delm= 1.00e-06 tau0= 1.00e+00
tau= 1.00e-01 sd= 1.00e-01 sw= 2.27e-13 rho= 1.00e-06 rho1= 1.00e-10
scfm= 1.00e+04 c1d= 1.00e-02 epdi= 1.00e-16
nre= 4 anal= 0

taubnd= 1.00e+00 epsfcn= 1.00e-16 difftype=3

termination reason:
KT-conditions satisfied, no further correction computed
evaluations of f 3
evaluations of grad f 2
evaluations of constraints 6
evaluations of grads of constraints 0
final scaling of objective 1.000000e+00
norm of grad(f) 1.414214e+00
lagrangian violation 4.718134e-14
feasibility violation 0.000000e+00
dual feasibility violation 0.000000e+00
optimizer runtime sec's 0.000000e+00

optimal value of f = 5.00000000000000e-01

optimal solution x =
4.99999999999991e-01 5.00000000000009e-01

multipliers are relativ to scf=1
nr. constraint multiplier norm(grad) or 1
1 5.0000000e-01 0.0000000e+00
2 9.9500000e+01 0.0000000e+00
3 5.0000000e-01 0.0000000e+00
4 9.9500000e+01 0.0000000e+00
5 0.0000000e+00 1.0000000e+00 1.3906925e-309
6 0.0000000e+00 0.0000000e+00

12

evaluations of restrictions and their gradients
(6, 0)
last estimate of cond.nr. of active gradients 1.414e+00

last estimate of cond.nr. of approx. hessian 1.000e+00
iterative steps total 3
of restarts 0
of full regular updates 1
of updates 1
of regularized full SQP-steps 0

If user want to access parameter values, simply

> ret$par
[1] 0.5 0.5

6.2 examples/simple2.c: nonlinear constraint

Second example shows optimization problem with parameter bounds and non-
linear constraint.

min
x,y

x2 + y2 subject to − 100 < x, y < 100, xy = 2 (2)

with intial value: (x, y) = (10, 10). We give gradient functions for objective and
nonlinear constraint(dfn() and dnlcon(), respectively).

p <- c(10,10)
par.l <- c(-100,-100); par.u <- c(100,100)
nlin.l <- nlin.u <- 2

fn <- function(x){
x[1]^2+x[2]^2

}
dfn <- function(x){
c(2*x[1], 2*x[2])

}
attr(fn, "gr") <- dfn

nlcon <- function(x){
x[1]*x[2]

}
dnlcon <- function(x){
c(x[2], x[1])

}
attr(nlcon, "gr") <- dnlcon

ret<-donlp2(p, fn, par.u=par.u, par.l=par.l,
nlin=list(nlcon), nlin.u=nlin.u, nlin.l=nlin.l)

13

6.3 example/hs211.c

This problem uses all types of constraints:

min
xi,i=1...10

5.04x1 + 0.035x2 + 10x3 + 3.36x5 − 0.063x4x7

subject to:
h1(x) = 1.22x4 − x1 − x5 = 0
h2(x) = 98000x3/(x4x9 + 1000x3)− x6 = 0
h3(x) = (x2 + x5)/x1 − x8 = 0
g1(x) = 35.82− 0.222x10 − bx9 ≥ 0, b = 0.9
g2(x) = −133 + 3x7 − ax10 ≥ 0, a = 0.99
g3(x) = −g1(x) + x9(1/b− b) ≥ 0
g4(x) = −g2(x) + (1/a− a)x10 ≥ 0

g5(x) = 1.12x1 + 0.13167x1x8 − 0.00667x1x
2
8 − ax4 ≥ 0

g6(x) = 57.425 + 1.098x8 − 0.038x2
8 + 0.325x6 − ax7 ≥ 0

g7(x) = −g5(x) + (1/a− a)x4 ≥ 0
g8(x) = −g6(x) + (1/a− a)x7 ≥ 0

0.00001 ≤ x1 ≤ 2000
0.00001 ≤ x2 ≤ 16000
0.00001 ≤ x3 ≤ 120
0.00001 ≤ x4 ≤ 5000
0.00001 ≤ x5 ≤ 2000

85 ≤ x6 ≤ 93
90 ≤ x7 ≤ 95
3 ≤ x8 ≤ 12

1.2 ≤ x9 ≤ 4
145 ≤ x10 ≤ 162

We have 10 parameter bounds, 5 linear constraints(arranging terms):

h1 → 1.22x4 − x1 − x5 = 0
g1 → −0.222x10− bx9 ≥ −35.82, b = 0.9
g2 → 3x7 − ax10 ≥ 133, a = 0.99
g3 → x9(1/b− b + b) + 0.222x10 ≥ 35.82
g4 → −3x7 + (1/a− a + a)x10 ≥ −133,

1 of which(h1) is equality constraint, and 6 nonlinear constraints:

h2 → 98000x3/(x4x9 + 1000x3)− x6 = 0
h3 → (x2 + x5)/x1 − x8 = 0

g5 → 1.12x1 + 0.13167x1x8 − 0.00667x1x
2
8 − ax4 ≥ 0

g6 → 57.425 + 1.098x8 − 0.038x2
8 + 0.325x6 − ax7 ≥ 0

g7 → −g5(x) + (1/a− a)x4 ≥ 0
g8 → −g6(x) + (1/a− a)x7 ≥ 0,

14

2 of which(h2, h3) are equality constraint.
R code will be follows:

a <- 0.99; b <- 0.9
##
Objective Function
##
fn <- function(par){
x1 <- par[1]; x2 <- par[2]; x3 <- par[3]; x4 <- par[4]; x5 <- par[5]
x6 <- par[6]; x7 <- par[7]; x8 <- par[8]; x9 <- par[9]; x10 <- par[10]

5.04*x1 + 0.035*x2 + 10*x3 +3.36*x5 - 0.063*x4*x7
}
##
Parameter Bounds
##
par.l <- c(rep(1e-5, 5), 85, 90, 3, 1.2, 145)
par.u <- c(2000, 16000, 120, 5000, 2000, 93, 95, 12, 4, 162)

##
Constraints
##
linbd <- matrix(0, nr=5, nc=2)
nlinbd <- matrix(0, nr=6, nc=2)

linear equality
linbd[1,] <- c(0,0) # h1
linbd[2,] <- c(-35.82, Inf) # g1
linbd[3,] <- c(133, Inf) # g2
linbd[4,] <- c(35.82,Inf) # g3
linbd[5,] <- c(-133, Inf) # g4

nonlinear equality
h2 <- function(par){
x1 <- par[1]; x2 <- par[2]; x3 <- par[3]; x4 <- par[4]; x5 <- par[5]
x6 <- par[6]; x7 <- par[7]; x8 <- par[8]; x9 <- par[9]; x10 <- par[10]

98000*x3/(x4*x9+1000*x3)-x6
}
nlinbd[1,] <- c(0,0)

nonlinear equality
h3 <- function(par){
x1 <- par[1]; x2 <- par[2]; x3 <- par[3]; x4 <- par[4]; x5 <- par[5]
x6 <- par[6]; x7 <- par[7]; x8 <- par[8]; x9 <- par[9]; x10 <- par[10]

(x2+x5)/x1 - x8
}
nlinbd[2,] <- c(0,0)

15

nonlinear inequality
g5 <- function(par){
x1 <- par[1]; x2 <- par[2]; x3 <- par[3]; x4 <- par[4]; x5 <- par[5]
x6 <- par[6]; x7 <- par[7]; x8 <- par[8]; x9 <- par[9]; x10 <- par[10]

1.12*x1 + 0.13167*x1*x8 - 0.00667*x1*x8^2 - a*x4
}
nlinbd[3,] <- c(0,Inf)

nonlinear inequality
g6 <- function(par){
x1 <- par[1]; x2 <- par[2]; x3 <- par[3]; x4 <- par[4]; x5 <- par[5]
x6 <- par[6]; x7 <- par[7]; x8 <- par[8]; x9 <- par[9]; x10 <- par[10]

57.425 + 1.098*x8 - 0.038*x8^2 + 0.325*x6 - a*x7
}
nlinbd[4,] <- c(0,Inf)

nonlinear inequality
g7 <- function(par){
x1 <- par[1]; x2 <- par[2]; x3 <- par[3]; x4 <- par[4]; x5 <- par[5]
x6 <- par[6]; x7 <- par[7]; x8 <- par[8]; x9 <- par[9]; x10 <- par[10]

-g5(par) + (1/a-a)*x4
}
nlinbd[5,] <- c(0,Inf)

nonlinear inequality
g8 <- function(par){
x1 <- par[1]; x2 <- par[2]; x3 <- par[3]; x4 <- par[4]; x5 <- par[5]
x6 <- par[6]; x7 <- par[7]; x8 <- par[8]; x9 <- par[9]; x10 <- par[10]

-g6(par) + (1/a-a)*x7
}
nlinbd[6,] <- c(0,Inf)

A is 5(linear constraints) x 10(params) matrix
A <- rbind(c(-1, 0, 0, 1.22,-1, 0, 0, 0, 0, 0), #h1

c(0, 0, 0, 0, 0, 0, 0, 0, -b, -0.222), #g1
c(0, 0, 0, 0, 0, 0, 3, 0, 0, -a), #g2
c(0, 0, 0, 0, 0, 0, 0, 0,(1/b-b)+b, 0.222), #g3
c(0, 0, 0, 0, 0, 0, -3, 0, 0,(1/a-a)+a)) #g4

initial values
p0 <- c(1745, 12e3, 11e1, 3048, 1974, 89.2, 92.8, 8, 3.6, 145)

control variables
cntl <- donlp2.control(del0=0.2, tau0=1.0, tau=0.1, taubnd=5e-6)

start constrained optimization

16

ret <- donlp2(par=p0, fn=fn,
par.u=par.u, par.l=par.l,
A=A,
lin.u=linbd[,2], lin.l=linbd[,1],
nlin=list(h2,h3,g5,g6,g7,g8),
nlin.upper=nlinbd[,2], nlin.lower=nlinbd[,1], name="alkylation",
control=cntl)

Since gradient functions are not implemented in the program and the numerical
differentiation algorithm is difftype=3(default), it takes about 0.90 sec to finish
the computation on my machine(Intel CoreDuo 2G, Memory 2G), while original
C version does within 0.1 sec.

7 Bugs

DONLP2 provides much more ’fine-tuning’ parameters than those exported to
Rdonlp2. So if you want other parameters that should be exported, please e-mail
me. Also, any comments of suggestions are highly welcome.

8 Copyright

Original DONLP2:

/* Conditions of use: */
/* 1. donlp2 is under the exclusive copyright of P. Spellucci */
/* (e-mail:spellucci@mathematik.tu-darmstadt.de) */
/* "donlp2" is a reserved name */
/* 2. donlp2 and its constituent parts come with no warranty, whether ex- */
/* pressed or implied, that it is free of errors or suitable for any */
/* specific purpose. */
/* It must not be used to solve any problem, whose incorrect solution */
/* could result in injury to a person , institution or property. */
/* It is at the users own risk to use donlp2 or parts of it and the */
/* author disclaims all liability for such use. */
/* 3. donlp2 is distributed "as is". In particular, no maintenance, support */
/* or trouble-shooting or subsequent upgrade is implied. */
/* 4. The use of donlp2 must be acknowledged, in any publication which */
/* contains */
/* results obtained with it or parts of it. Citation of the authors name */
/* and netlib-source is suitable. */
/* 5. The free use of donlp2 and parts of it is restricted for research */
/* purposes */
/* commercial uses require permission and licensing from P. Spellucci. */

Rdonlp2 Copyright (C) 2007 Ryuichi Tamura(ry.tamura at gmail.com). You
may re-distribute or modify this library under GNU LGPL ver.2.

17

