# File src/library/stats/tests/nlm.R # Part of the R package, https://www.R-project.org # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ ## nlm() testing ---- partly same as in ../demo/nlm.R ## NB: Strict regression tests -- output not "looked at" library(stats) ## "truly 64 bit platform" ## {have seen "x86-64" (instead of "x86_64") on Windows 2008 server} (b.64 <- grepl("^x86.64", Sys.info()[["machine"]]) && .Machine$sizeof.pointer == 8) (Lb64 <- b.64 && Sys.info()[["sysname"]] == "Linux") ## Example 1: Rosenbrock banana valley function (2 D) ## f.Rosenb <- function(x1, x2) 100*(x2 - x1*x1)^2 + (1-x1)^2 grRosenb <- function(x1, x2) c(-400*x1*(x2 - x1*x1) - 2*(1-x1), 200*(x2 - x1*x1)) hessRosenb <- function(x1, x2) { a11 <- 2 - 400*x2 + 1200*x1*x1 a21 <- -400*x1 matrix(c(a11, a21, a21, 200), 2, 2) } fg <- function(x) { # analytic gradient only x1 <- x[1]; x2 <- x[2] structure(f.Rosenb(x1, x2), "gradient" = grRosenb(x1, x2)) } ## fgh <- function(x) { # analytic gradient and Hessian x1 <- x[1]; x2 <- x[2] structure(f.Rosenb(x1, x2), "gradient" = grRosenb(x1, x2), "hessian" = hessRosenb(x1, x2)) } nlm3 <- function(x0, ...) { stopifnot(length(x0) == 2, is.numeric(x0)) list(nl.f = nlm(function(x) f.Rosenb(x[1],x[2]), x0, ...), nl.fg = nlm(fg , x0, ...), nl.fgh= nlm(fgh, x0, ...)) } utils::str(l3.0 <- nlm3(x0 = c(-1.2, 1))) chkNlm <- function(nlL, estimate, tols, codes.wanted = 1:2) { stopifnot(is.list(nlL), ## nlL = list(, , ,...) sapply(nlL, is.list), lengths(nlL) == 5, # nlm(.) like is.numeric(estimate), is.list(tols), names(tols) %in% c("min","est","grad"), sapply(tols, is.numeric), unlist(tols) > 0) p <- length(estimate) n <- length(nlL) tols <- lapply(tols, rep_len, length.out = n) stopifnot( vapply(nlL, `[[`, pi, "minimum") <= tols$min, ##---- abs(vapply(nlL, `[[`, estimate, "estimate") - estimate) <= rep(tols$est, each=p), ##---- abs(vapply(nlL, `[[`, c(0,0), "gradient")) <= rep(tols$grad, each=p), ##---- vapply(nlL, `[[`, 0L, "code") %in% codes.wanted) } chkNlm(l3.0, estimate = c(1,1), ## nl.f nl.fg nl.fgh tols = list(min = c(1e-11,1e-17,1e-16), est = c(4e-5, 1e-9, 1e-8), grad= c(1e-6, 9e-9, 7e-7))) ## nl.fgh, the one with the Hessian had failed in R <= 3.4.0 ## ------- and still is less accurate here than the gradient-only version ## all converge here, too, fgh now being best utils::str(l3.10 <- nlm3(x0 = c(-10, 10), ndigit = 14, gradtol = 1e-8)) chkNlm(l3.10, estimate = c(1,1), # lower tolerances now, notably for fgh: ## nl.f nl.fg nl.fgh tols = list(min = c(1e-14, 1e-20, 1e-28), est = c(5e-7, 1e-10, 1e-14), grad= c(1e-6, 6e-9 , 1e-12)), codes.wanted = if(Lb64) 1:2 else 1:3) ## all 3 fail to converge here utils::str(l3.1c <- nlm3(x0 = c(-100, 100), iterlim = 1000)) ## i.e., all convergence codes > 1: sapply(l3.1c, `[[`, "code") ## nl.f nl.fg nl.fgh (seen on 32-bit and 64-bit) ## 2 2 4