!> \brief \b DZNRM2 ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! ! Definition: ! =========== ! ! DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX) ! ! .. Scalar Arguments .. ! INTEGER INCX,N ! .. ! .. Array Arguments .. ! DOUBLE COMPLEX X(*) ! .. ! ! !> \par Purpose: ! ============= !> !> \verbatim !> !> DZNRM2 returns the euclidean norm of a vector via the function !> name, so that !> !> DZNRM2 := sqrt( x**H*x ) !> \endverbatim ! ! Arguments: ! ========== ! !> \param[in] N !> \verbatim !> N is INTEGER !> number of elements in input vector(s) !> \endverbatim !> !> \param[in] X !> \verbatim !> X is COMPLEX*16 array, dimension (N) !> complex vector with N elements !> \endverbatim !> !> \param[in] INCX !> \verbatim !> INCX is INTEGER, storage spacing between elements of X !> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n !> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n !> If INCX = 0, x isn't a vector so there is no need to call !> this subroutine. If you call it anyway, it will count x(1) !> in the vector norm N times. !> \endverbatim ! ! Authors: ! ======== ! !> \author Edward Anderson, Lockheed Martin ! !> \date August 2016 ! !> \ingroup nrm2 ! !> \par Contributors: ! ================== !> !> Weslley Pereira, University of Colorado Denver, USA ! !> \par Further Details: ! ===================== !> !> \verbatim !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Blue, James L. (1978) !> A Portable Fortran Program to Find the Euclidean Norm of a Vector !> ACM Trans Math Softw 4:15--23 !> https://doi.org/10.1145/355769.355771 !> !> \endverbatim !> ! ===================================================================== function DZNRM2( n, x, incx ) integer, parameter :: wp = kind(1.d0) real(wp) :: DZNRM2 ! ! -- Reference BLAS level1 routine (version 3.9.1) -- ! -- Reference BLAS is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! March 2021 ! ! .. Constants .. real(wp), parameter :: zero = 0.0_wp real(wp), parameter :: one = 1.0_wp real(wp), parameter :: maxN = huge(0.0_wp) ! .. ! .. Blue's scaling constants .. real(wp), parameter :: tsml = real(radix(0._wp), wp)**ceiling( & (minexponent(0._wp) - 1) * 0.5_wp) real(wp), parameter :: tbig = real(radix(0._wp), wp)**floor( & (maxexponent(0._wp) - digits(0._wp) + 1) * 0.5_wp) real(wp), parameter :: ssml = real(radix(0._wp), wp)**( - floor( & (minexponent(0._wp) - digits(0._wp)) * 0.5_wp)) real(wp), parameter :: sbig = real(radix(0._wp), wp)**( - ceiling( & (maxexponent(0._wp) + digits(0._wp) - 1) * 0.5_wp)) ! .. ! .. Scalar Arguments .. integer :: incx, n ! .. ! .. Array Arguments .. complex(wp) :: x(*) ! .. ! .. Local Scalars .. integer :: i, ix logical :: notbig real(wp) :: abig, amed, asml, ax, scl, sumsq, ymax, ymin ! ! Quick return if possible ! DZNRM2 = zero if( n <= 0 ) return ! scl = one sumsq = zero ! ! Compute the sum of squares in 3 accumulators: ! abig -- sums of squares scaled down to avoid overflow ! asml -- sums of squares scaled up to avoid underflow ! amed -- sums of squares that do not require scaling ! The thresholds and multipliers are ! tbig -- values bigger than this are scaled down by sbig ! tsml -- values smaller than this are scaled up by ssml ! notbig = .true. asml = zero amed = zero abig = zero ix = 1 if( incx < 0 ) ix = 1 - (n-1)*incx do i = 1, n ax = abs(real(x(ix))) if (ax > tbig) then abig = abig + (ax*sbig)**2 notbig = .false. else if (ax < tsml) then if (notbig) asml = asml + (ax*ssml)**2 else amed = amed + ax**2 end if ax = abs(aimag(x(ix))) if (ax > tbig) then abig = abig + (ax*sbig)**2 notbig = .false. else if (ax < tsml) then if (notbig) asml = asml + (ax*ssml)**2 else amed = amed + ax**2 end if ix = ix + incx end do ! ! Combine abig and amed or amed and asml if more than one ! accumulator was used. ! if (abig > zero) then ! ! Combine abig and amed if abig > 0. ! if ( (amed > zero) .or. (amed > maxN) .or. (amed /= amed) ) then abig = abig + (amed*sbig)*sbig end if scl = one / sbig sumsq = abig else if (asml > zero) then ! ! Combine amed and asml if asml > 0. ! if ( (amed > zero) .or. (amed > maxN) .or. (amed /= amed) ) then amed = sqrt(amed) asml = sqrt(asml) / ssml if (asml > amed) then ymin = amed ymax = asml else ymin = asml ymax = amed end if scl = one sumsq = ymax**2*( one + (ymin/ymax)**2 ) else scl = one / ssml sumsq = asml end if else ! ! Otherwise all values are mid-range ! scl = one sumsq = amed end if DZNRM2 = scl*sqrt( sumsq ) return end function !> \brief \b ZROTG generates a Givens rotation with real cosine and complex sine. ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! !> \par Purpose: ! ============= !> !> \verbatim !> !> ZROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -conjg(s) c ] [ b ] [ 0 ] !> where c is real, s is complex, and c**2 + conjg(s)*s = 1. !> !> The computation uses the formulas !> |x| = sqrt( Re(x)**2 + Im(x)**2 ) !> sgn(x) = x / |x| if x /= 0 !> = 1 if x = 0 !> c = |a| / sqrt(|a|**2 + |b|**2) !> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2) !> r = sgn(a)*sqrt(|a|**2 + |b|**2) !> When a and b are real and r /= 0, the formulas simplify to !> c = a / r !> s = b / r !> the same as in DROTG when |a| > |b|. When |b| >= |a|, the !> sign of c and s will be different from those computed by DROTG !> if the signs of a and b are not the same. !> !> \endverbatim !> !> @see lartg, @see lartgp ! ! Arguments: ! ========== ! !> \param[in,out] A !> \verbatim !> A is DOUBLE COMPLEX !> On entry, the scalar a. !> On exit, the scalar r. !> \endverbatim !> !> \param[in] B !> \verbatim !> B is DOUBLE COMPLEX !> The scalar b. !> \endverbatim !> !> \param[out] C !> \verbatim !> C is DOUBLE PRECISION !> The scalar c. !> \endverbatim !> !> \param[out] S !> \verbatim !> S is DOUBLE COMPLEX !> The scalar s. !> \endverbatim ! ! Authors: ! ======== ! !> \author Weslley Pereira, University of Colorado Denver, USA ! !> \date December 2021 ! !> \ingroup rotg ! !> \par Further Details: ! ===================== !> !> \verbatim !> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> \endverbatim ! ! ===================================================================== subroutine ZROTG( a, b, c, s ) integer, parameter :: wp = kind(1.d0) ! ! -- Reference BLAS level1 routine -- ! -- Reference BLAS is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! ! .. Constants .. real(wp), parameter :: zero = 0.0_wp real(wp), parameter :: one = 1.0_wp complex(wp), parameter :: czero = 0.0_wp ! .. ! .. Scaling constants .. real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( & minexponent(0._wp)-1, & 1-maxexponent(0._wp) & ) real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( & 1-minexponent(0._wp), & maxexponent(0._wp)-1 & ) real(wp), parameter :: rtmin = sqrt( safmin ) ! .. ! .. Scalar Arguments .. real(wp) :: c complex(wp) :: a, b, s ! .. ! .. Local Scalars .. real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmax complex(wp) :: f, fs, g, gs, r, t ! .. ! .. Intrinsic Functions .. intrinsic :: abs, aimag, conjg, max, min, real, sqrt ! .. ! .. Statement Functions .. real(wp) :: ABSSQ ! .. ! .. Statement Function definitions .. ABSSQ( t ) = real( t )**2 + aimag( t )**2 ! .. ! .. Executable Statements .. ! f = a g = b if( g == czero ) then c = one s = czero r = f else if( f == czero ) then c = zero if( real(g) == zero ) then r = abs(aimag(g)) s = conjg( g ) / r elseif( aimag(g) == zero ) then r = abs(real(g)) s = conjg( g ) / r else g1 = max( abs(real(g)), abs(aimag(g)) ) rtmax = sqrt( safmax/2 ) if( g1 > rtmin .and. g1 < rtmax ) then ! ! Use unscaled algorithm ! ! The following two lines can be replaced by `d = abs( g )`. ! This algorithm do not use the intrinsic complex abs. g2 = ABSSQ( g ) d = sqrt( g2 ) s = conjg( g ) / d r = d else ! ! Use scaled algorithm ! u = min( safmax, max( safmin, g1 ) ) gs = g / u ! The following two lines can be replaced by `d = abs( gs )`. ! This algorithm do not use the intrinsic complex abs. g2 = ABSSQ( gs ) d = sqrt( g2 ) s = conjg( gs ) / d r = d*u end if end if else f1 = max( abs(real(f)), abs(aimag(f)) ) g1 = max( abs(real(g)), abs(aimag(g)) ) rtmax = sqrt( safmax/4 ) if( f1 > rtmin .and. f1 < rtmax .and. & g1 > rtmin .and. g1 < rtmax ) then ! ! Use unscaled algorithm ! f2 = ABSSQ( f ) g2 = ABSSQ( g ) h2 = f2 + g2 ! safmin <= f2 <= h2 <= safmax if( f2 >= h2 * safmin ) then ! safmin <= f2/h2 <= 1, and h2/f2 is finite c = sqrt( f2 / h2 ) r = f / c rtmax = rtmax * 2 if( f2 > rtmin .and. h2 < rtmax ) then ! safmin <= sqrt( f2*h2 ) <= safmax s = conjg( g ) * ( f / sqrt( f2*h2 ) ) else s = conjg( g ) * ( r / h2 ) end if else ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow. ! Moreover, ! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax, ! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax). ! Also, ! g2 >> f2, which means that h2 = g2. d = sqrt( f2 * h2 ) c = f2 / d if( c >= safmin ) then r = f / c else ! f2 / sqrt(f2 * h2) < safmin, then ! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax r = f * ( h2 / d ) end if s = conjg( g ) * ( f / d ) end if else ! ! Use scaled algorithm ! u = min( safmax, max( safmin, f1, g1 ) ) gs = g / u g2 = ABSSQ( gs ) if( f1 / u < rtmin ) then ! ! f is not well-scaled when scaled by g1. ! Use a different scaling for f. ! v = min( safmax, max( safmin, f1 ) ) w = v / u fs = f / v f2 = ABSSQ( fs ) h2 = f2*w**2 + g2 else ! ! Otherwise use the same scaling for f and g. ! w = one fs = f / u f2 = ABSSQ( fs ) h2 = f2 + g2 end if ! safmin <= f2 <= h2 <= safmax if( f2 >= h2 * safmin ) then ! safmin <= f2/h2 <= 1, and h2/f2 is finite c = sqrt( f2 / h2 ) r = fs / c rtmax = rtmax * 2 if( f2 > rtmin .and. h2 < rtmax ) then ! safmin <= sqrt( f2*h2 ) <= safmax s = conjg( gs ) * ( fs / sqrt( f2*h2 ) ) else s = conjg( gs ) * ( r / h2 ) end if else ! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow. ! Moreover, ! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax, ! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax). ! Also, ! g2 >> f2, which means that h2 = g2. d = sqrt( f2 * h2 ) c = f2 / d if( c >= safmin ) then r = fs / c else ! f2 / sqrt(f2 * h2) < safmin, then ! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax r = fs * ( h2 / d ) end if s = conjg( gs ) * ( fs / d ) end if ! Rescale c and r c = c * w r = r * u end if end if a = r return end subroutine