subroutine dtrco(t,ldt,n,rcond,z,job) integer ldt,n,job double precision t(ldt,n),z(n) double precision rcond c c dtrco estimates the condition of a double precision triangular c matrix. c c on entry c c t double precision(ldt,n) c t contains the triangular matrix. the zero c elements of the matrix are not referenced, and c the corresponding elements of the array can be c used to store other information. c c ldt integer c ldt is the leading dimension of the array t. c c n integer c n is the order of the system. c c job integer c = 0 t is lower triangular. c = nonzero t is upper triangular. c c on return c c rcond double precision c an estimate of the reciprocal condition of t . c for the system t*x = b , relative perturbations c in t and b of size epsilon may cause c relative perturbations in x of size epsilon/rcond . c if rcond is so small that the logical expression c 1.0 + rcond .eq. 1.0 c is true, then t may be singular to working c precision. in particular, rcond is zero if c exact singularity is detected or the estimate c underflows. c c z double precision(n) c a work vector whose contents are usually unimportant. c if t is close to a singular matrix, then z is c an approximate null vector in the sense that c norm(a*z) = rcond*norm(a)*norm(z) . c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas daxpy,dscal,dasum c fortran abs,max,sign c c internal variables c double precision w,wk,wkm,ek double precision tnorm,ynorm,s,sm,dasum integer i1,j,j1,j2,k,kk,l logical lower c lower = job .eq. 0 c c compute 1-norm of t c tnorm = 0.0d0 do 10 j = 1, n l = j if (lower) l = n + 1 - j i1 = 1 if (lower) i1 = j tnorm = max(tnorm,dasum(l,t(i1,j),1)) 10 continue c c rcond = 1/(norm(t)*(estimate of norm(inverse(t)))) . c estimate = norm(z)/norm(y) where t*z = y and trans(t)*y = e . c trans(t) is the transpose of t . c the components of e are chosen to cause maximum local c growth in the elements of y . c the vectors are frequently rescaled to avoid overflow. c c solve trans(t)*y = e c ek = 1.0d0 do 20 j = 1, n z(j) = 0.0d0 20 continue do 100 kk = 1, n k = kk if (lower) k = n + 1 - kk if (z(k) .ne. 0.0d0) ek = sign(ek,-z(k)) if (abs(ek-z(k)) .le. abs(t(k,k))) go to 30 s = abs(t(k,k))/abs(ek-z(k)) call dscal(n,s,z,1) ek = s*ek 30 continue wk = ek - z(k) wkm = -ek - z(k) s = abs(wk) sm = abs(wkm) if (t(k,k) .eq. 0.0d0) go to 40 wk = wk/t(k,k) wkm = wkm/t(k,k) go to 50 40 continue wk = 1.0d0 wkm = 1.0d0 50 continue if (kk .eq. n) go to 90 j1 = k + 1 if (lower) j1 = 1 j2 = n if (lower) j2 = k - 1 do 60 j = j1, j2 sm = sm + abs(z(j)+wkm*t(k,j)) z(j) = z(j) + wk*t(k,j) s = s + abs(z(j)) 60 continue if (s .ge. sm) go to 80 w = wkm - wk wk = wkm do 70 j = j1, j2 z(j) = z(j) + w*t(k,j) 70 continue 80 continue 90 continue z(k) = wk 100 continue s = 1.0d0/dasum(n,z,1) call dscal(n,s,z,1) c ynorm = 1.0d0 c c solve t*z = y c do 130 kk = 1, n k = n + 1 - kk if (lower) k = kk if (abs(z(k)) .le. abs(t(k,k))) go to 110 s = abs(t(k,k))/abs(z(k)) call dscal(n,s,z,1) ynorm = s*ynorm 110 continue if (t(k,k) .ne. 0.0d0) z(k) = z(k)/t(k,k) if (t(k,k) .eq. 0.0d0) z(k) = 1.0d0 i1 = 1 if (lower) i1 = k + 1 if (kk .ge. n) go to 120 w = -z(k) call daxpy(n-kk,w,t(i1,k),1,z(i1),1) 120 continue 130 continue c make znorm = 1.0 s = 1.0d0/dasum(n,z,1) call dscal(n,s,z,1) ynorm = s*ynorm c if (tnorm .ne. 0.0d0) rcond = ynorm/tnorm if (tnorm .eq. 0.0d0) rcond = 0.0d0 return end