####  eval / parse / deparse / substitute ...

####  Part 2
####  ======  Recommended packages allowed  .. output tests *sloppily*

srcdir <- file.path(Sys.getenv("SRCDIR"), "eval-fns.R")
source(if(file.exists(srcdir)) srcdir else "./eval-fns.R", echo = TRUE)
rm("srcdir")

if(require("Matrix")) withAutoprint({ cat("Trying some Matrix objects, too\n")
    D5. <- Diagonal(x = 5:1)
    D5N <- D5.; D5N[5,5] <- NA
    ## a subset/version of example(Matrix) : --------------------------------

    (Z32 <- Matrix(0, 3, 2))              # 3 by 2 matrix of zeros -> sparse
    (z32 <- Matrix(0, 3, 2, sparse=FALSE))# -> 'dense'

    ## 4 cases - 3 different results :
    ## TODO (Z22  <- Matrix(0, 2, 2))              # diagonal from Matrix 1.3.* on
    (Z22. <- Matrix(0, 2, 2, sparse=FALSE))# (ditto)
    (Z22s <- Matrix(0, 2, 2,               doDiag=FALSE))# -> sparse symm. "dsCMatrix"
    (Z22d <- Matrix(0, 2, 2, sparse=FALSE, doDiag=FALSE))# -> dense  symm. "dsyMatrix"

    ## logical ones:
    (L4  <- Matrix(diag(4) >  0)) # -> "ldiMatrix" with diag = "U"
    ## TODO (L4. <- Matrix(diag(4) >  0, sparse=TRUE)) #  ditto, from Matrix 1.3.* on
    (L4d <- Matrix(diag(4) >= 0)) # -> "lsyMatrix" (of all 'TRUE')
    ## triangular
    l3 <- upper.tri(matrix(,3,3))
    (M <- Matrix(l3))               # "ltCMatrix"
    (Nl3 <- Matrix(! l3))           # "ltrMatrix"
    (l3s <- as(l3, "CsparseMatrix"))# "lgCMatrix"

    (I3 <- Matrix(diag(3)))# identity, i.e., unit "diagonalMatrix"

    (ad <- cbind(a=c(2,1), b=1:2))# symmetric *apart* from dimnames
    (As <- Matrix(ad, dimnames = list(NULL,NULL)))# -> symmetric
    forceSymmetric(ad) # also symmetric, w/ symm. dimnames
    stopifnot(is(As, "symmetricMatrix"),
              is(Matrix(0, 3,3), "sparseMatrix"),
              is(Matrix(FALSE, 1,1), "sparseMatrix"))

    ## a subset from  example(sparseMatrix) : -------------------------------
    i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
    A <- sparseMatrix(i, j, x = x)
    sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)
    tA <- sparseMatrix(i, j, x = x, triangular= TRUE)
    ## dims can be larger than the maximum row or column indices
    AA <- sparseMatrix(c(1,3:8), c(2,9,6:10), x = 7 * (1:7), dims = c(10,20))
    ## i, j and x can be in an arbitrary order, as long as they are consistent
    set.seed(1); (perm <- sample(1:7))
    A1 <- sparseMatrix(i[perm], j[perm], x = x[perm])
    ## the (i,j) pairs can be repeated, in which case the x's are summed
    args <- data.frame(i = c(i, 1), j = c(j, 2), x = c(x, 2))
    Aa <- do.call(sparseMatrix, args)
    A. <- do.call(sparseMatrix, c(args, list(use.last.ij = TRUE)))
    ## for a pattern matrix, of course there is no "summing":
    nA <- do.call(sparseMatrix, args[c("i","j")])
    dn <- list(LETTERS[1:3], letters[1:5])
    ## pointer vectors can be used, and the (i,x) slots are sorted if necessary:
    m <- sparseMatrix(i = c(3,1, 3:2, 2:1), p= c(0:2, 4,4,6), x = 1:6, dimnames = dn)
    ## no 'x' --> patter*n* matrix:
    n <- sparseMatrix(i=1:6, j=rev(2:7))
    ## an empty sparse matrix:
    e <- sparseMatrix(dims = c(4,6), i={}, j={})
    ## a symmetric one:
    sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5,
                       dims = c(7,7), symmetric=TRUE)
})

runEPD_checks() # Action!

summary(warnings())
## at the very end
cat('Time elapsed: ', proc.time(), "\n")