#### -*- R -*- ## Helical Valley Function ## Page 362 Dennis + Schnabel theta <- function(x1,x2) { if(x1 > 0) return((0.5/pi)*atan(x2/x1)) else return((0.5/pi)*atan(x2/x1)+0.5) } f <- function(x) { f1 <- 10*(x[3] - 10*theta(x[1],x[2])) f2 <- 10*(sqrt(x[1]^2+x[2]^2)-1) f3 <- x[3] return(f1^2+f2^2+f3^2) } ## explore surface x <- seq(-1, 2, len=50) y <- seq(-1, 1, len=50) z <- apply(as.matrix(expand.grid(x, y)), 1, function(x) f(c(x, 0))) contour(x, y, matrix(log10(z), 50, 50)) nlm(f, c(-1,0,0), hessian=TRUE, print=0) ## the Rosenbrock banana valley function f <- function(x) { x1 <- x[1]; x2 <- x[2] 100*(x2 - x1*x1)^2 + (1-x1)^2 } ## explore surface x <- seq(-2, 2, len=100) y <- seq(-1, 1, len=100) fx <- function(x) { x1 <- x[,1]; x2 <- x[,2] 100*(x2 - x1*x1)^2 + (1-x1)^2 } z <- fx(expand.grid(x, y)) contour(x, y, matrix(log10(z), length(x))) nlm(f, c(-1.2,1), hessian=TRUE) fg <- function(x) { gr <- function(x1, x2) { c(-400*x1*(x2 - x1*x1)-2*(1-x1), 200*(x2 - x1*x1)) } x1 <- x[1]; x2 <- x[2] res<- 100*(x2 - x1*x1)^2 + (1-x1)^2 attr(res, "gradient") <- gr(x1, x2) return(res) } nlm(fg, c(-1.2,1), hessian=TRUE) ## or use deriv to find the derivatives fd <- deriv(~ 100*(x2 - x1*x1)^2 + (1-x1)^2, c("x1", "x2")) fdd <- function(x1, x2) {} body(fdd) <- fd nlm(function(x) fdd(x[1], x[2]), c(-1.2,1), hessian=TRUE) fgh <- function(x) { gr <- function(x1, x2) { c(-400*x1*(x2 - x1*x1) - 2*(1-x1), 200*(x2 - x1*x1)) } h <- function(x1, x2) { a11 <- 2 - 400*(x2 - x1*x1) + 800*x1*x1 a21 <- -400*x1 matrix(c(a11,a21,a21,200),2,2) } x1 <- x[1]; x2 <- x[2] res<- 100*(x2 - x1*x1)^2 + (1-x1)^2 attr(res, "gradient") <- gr(x1, x2) attr(res, "hessian") <- h(x1, x2) return(res) } nlm(fgh, c(-1.2,1), hessian=TRUE)