c c dqrdc2 uses householder transformations to compute the qr c factorization of an n by p matrix x. a limited column c pivoting strategy based on the 2-norms of the reduced columns c moves columns with near-zero norm to the right-hand edge of c the x matrix. this strategy means that sequential one c degree-of-freedom effects can be computed in a natural way. c c i am very nervous about modifying linpack code in this way. c if you are a computational linear algebra guru and you really c understand how to solve this problem please feel free to c suggest improvements to this code. c c on entry c c x double precision(ldx,p), where ldx .ge. n. c x contains the matrix whose decomposition is to be c computed. c c ldx integer. c ldx is the leading dimension of the array x. c c n integer. c n is the number of rows of the matrix x. c c p integer. c p is the number of columns of the matrix x. c c tol double precision c tol is the nonnegative tolerance used to c determine the subset of the columns of x c included in the solution. c c jpvt integer(p). c integers which are swapped in the same way as the c the columns of x during pivoting. on entry these c should be set equal to the column indices of the c columns of the x matrix (typically 1 to p). c c work double precision(p,2). c work is a work array. c c on return c c x x contains in its upper triangle the upper c triangular matrix r of the qr factorization. c below its diagonal x contains information from c which the orthogonal part of the decomposition c can be recovered. note that if pivoting has c been requested, the decomposition is not that c of the original matrix x but that of x c with its columns permuted as described by jpvt. c c k integer. c k contains the number of columns of x judged c to be linearly independent. c c qraux double precision(p). c qraux contains further information required to recover c the orthogonal part of the decomposition. c c jpvt jpvt(k) contains the index of the column of the c original matrix that has been interchanged into c the k-th column, if pivoting was requested. c c this version dated 22 august 1995 c ross ihaka c c dqrdc uses the following functions and subprograms. c c blas daxpy,ddot,dscal,dnrm2 c fortran dabs,dmax1,min0,dsqrt c subroutine dqrdc2(x,ldx,n,p,tol,k,qraux,jpvt,work) integer ldx,n,p integer jpvt(*) double precision x(ldx,*),qraux(*),work(p,2),tol c c internal variables c integer i,j,l,lp1,lup double precision dnrm2,tt,ttt double precision ddot,nrmxl,t c c c compute the norms of the columns of x. c do 70 j = 1, p qraux(j) = dnrm2(n,x(1,j),1) work(j,1) = qraux(j) work(j,2) = qraux(j) if(work(j,2) .eq. 0.0d0) work(j,2) = 1.0d0 70 continue c c perform the householder reduction of x. c lup = min0(n,p) k = lup + 1 do 200 l = 1, lup c c cycle the columns from l to lup left-to-right until one c with non-negligible norm is located. a column is considered c to have become negligible if its norm has fallen below c tol times its original norm. the check for l .le. k c avoids infinite cycling. c 80 continue if (l .ge. k .or. qraux(l) .ge. work(l,2)*tol) go to 120 lp1 = l+1 do 100 i=1,n t = x(i,l) do 90 j=lp1,lup x(i,j-1) = x(i,j) 90 continue x(i,lup) = t 100 continue i = jpvt(l) t = qraux(l) tt = work(l,1) ttt = work(l,2) do 110 j=lp1,lup jpvt(j-1) = jpvt(j) qraux(j-1) = qraux(j) work(j-1,1) = work(j,1) work(j-1,2) = work(j,2) 110 continue jpvt(lup) = i qraux(lup) = t work(lup,1) = tt work(lup,2) = ttt k = k - 1 go to 80 120 continue if (l .eq. n) go to 190 c c compute the householder transformation for column l. c nrmxl = dnrm2(n-l+1,x(l,l),1) if (nrmxl .eq. 0.0d0) go to 180 if (x(l,l) .ne. 0.0d0) nrmxl = dsign(nrmxl,x(l,l)) call dscal(n-l+1,1.0d0/nrmxl,x(l,l),1) x(l,l) = 1.0d0 + x(l,l) c c apply the transformation to the remaining columns, c updating the norms. c lp1 = l + 1 if (p .lt. lp1) go to 170 do 160 j = lp1, p t = -ddot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l) call daxpy(n-l+1,t,x(l,l),1,x(l,j),1) if (qraux(j) .eq. 0.0d0) go to 150 tt = 1.0d0 - (dabs(x(l,j))/qraux(j))**2 tt = dmax1(tt,0.0d0) t = tt tt = 1.0d0 + 0.05d0*tt*(qraux(j)/work(j,1))**2 if (tt .eq. 1.0d0) go to 130 qraux(j) = qraux(j)*dsqrt(t) go to 140 130 continue qraux(j) = dnrm2(n-l,x(l+1,j),1) work(j,1) = qraux(j) 140 continue 150 continue 160 continue 170 continue c c save the transformation. c qraux(l) = x(l,l) x(l,l) = -nrmxl 180 continue 190 continue 200 continue k = k - 1 return end