R : Copyright 1998, The R Development Core Team Version 0.63.0 Unstable (June 23, 1998) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type "?license" or "?licence" for distribution details. R is a collaborative project with many contributors. Type "?contributors" for a list. Type "demo()" for some demos, "help()" for on-line help, or "help.start()" for a HTML browser interface to help. > #### d|ensity > #### p|robability (cumulative) > #### q|uantile > #### r|andom number generation > #### > #### Functions for ``d/p/q/r'' > > source(paste(getenv("SRCDIR"),"all.equal.R", sep="/")) > > if(!interactive()) .Random.seed <- rep(7654, 3) > > ##--- Cumulative Poisson '==' Cumulative Chi^2 : > ##--- Abramowitz & Stegun, p.941 : 26.4.21 (26.4.2) > n1 <- 20; n2 <- 16 > for(lambda in rexp(n1)) + for(k in rpois(n2, lambda)) { + tst <- all.equal(1 - pchisq(2*lambda, 2*(k+1)), + sum(dpois(0:k, lambda=lambda))) + if(!(is.logical(tst) && tst)) + cat("lambda=", format(lambda),". k =",k, " --> tst=", tst,"\n") + } > > ##--- Cumulative Binomial '==' Cumulative F : > ##--- Abramowitz & Stegun, p.945-6; 26.5.24 AND 26.5.28 : > n0 <- 50; n1 <- 16; n2 <- 20; n3 <- 8 > for(n in rbinom(n1, size = 2*n0, p = .4)) { + cat("n=",n,": ") + for(p in c(0,1,rbeta(n2, 2,4))) { + cat(".") + for(k in rbinom(n3, size = n, prob = runif(1))) { + ## For X ~ Bin(n,p), compute 1 - P[X > k] = P[X <= k] in two ways : + tst <- all.equal(if(k==n || p==0) 1 else + pf((k+1)/(n-k)*(1-p)/p, df1= 2*(n-k), df2 = 2*(k+1)), + sum(dbinom(0:k, size = n, prob = p))) + if(!(is.logical(tst) && tst)) + cat("n=", n,"; p =", format(p),". k =",k, " --> tst=", tst,"\n") + } + } + cat("\n") + } n= 46 : ...................... n= 42 : ...................... n= 36 : ...................... n= 37 : ...................... n= 34 : ...................... n= 43 : ...................... n= 41 : ...................... n= 39 : ...................... n= 34 : ...................... n= 43 : ...................... n= 37 : ...................... n= 39 : ...................... n= 41 : ...................... n= 48 : ...................... n= 43 : ...................... n= 33 : ...................... >