## tests of R functions based on the lapack module ## NB: the signs of singular and eigenvectors are arbitrary, ## so there may be differences from the reference ouptut, ## especially when alternative BLAS are used. options(digits = 4L) ## ------- examples from ?svd --------- hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") } Eps <- 100 * .Machine$double.eps ## The signs of the vectors are not determined here, so don't print X <- hilbert(9L)[, 1:6] s <- svd(X); D <- diag(s$d) stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V' stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U' X V ## ditto X <- cbind(1, 1:7) s <- svd(X); D <- diag(s$d) stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V' stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U' X V # test nu and nv s <- svd(X, nu = 0L) s <- svd(X, nu = 7L) # the last 5 columns are not determined here stopifnot(dim(s$u) == c(7L,7L)) s <- svd(X, nv = 0L) # test of complex case X <- cbind(1, 1:7+(-3:3)*1i) s <- svd(X); D <- diag(s$d) stopifnot(abs(X - s$u %*% D %*% Conj(t(s$v))) < Eps) stopifnot(abs(D - Conj(t(s$u)) %*% X %*% s$v) < Eps) ## ------- tests of random real and complex matrices ------ fixsign <- function(A) { A[] <- apply(A, 2L, function(x) x*sign(Re(x[1L]))) A } ## 100 may cause failures here. eigenok <- function(A, E, Eps=1000*.Machine$double.eps) { print(fixsign(E$vectors)) print(zapsmall(E$values)) V <- E$vectors; lam <- E$values stopifnot(abs(A %*% V - V %*% diag(lam)) < Eps, abs(lam[length(lam)]/lam[1]) < Eps | # this one not for singular A : abs(A - V %*% diag(lam) %*% t(V)) < Eps) } Ceigenok <- function(A, E, Eps=1000*.Machine$double.eps) { print(fixsign(E$vectors)) print(signif(E$values, 5)) V <- E$vectors; lam <- E$values stopifnot(Mod(A %*% V - V %*% diag(lam)) < Eps, Mod(A - V %*% diag(lam) %*% Conj(t(V))) < Eps) } ## failed for some 64bit-Lapack-gcc combinations: sm <- cbind(1, 3:1, 1:3) eigenok(sm, eigen(sm)) eigenok(sm, eigen(sm, sym=FALSE)) set.seed(123) sm <- matrix(rnorm(25), 5, 5) sm <- 0.5 * (sm + t(sm)) eigenok(sm, eigen(sm)) eigenok(sm, eigen(sm, sym=FALSE)) sm[] <- as.complex(sm) Ceigenok(sm, eigen(sm)) Ceigenok(sm, eigen(sm, sym=FALSE)) sm[] <- sm + rnorm(25) * 1i sm <- 0.5 * (sm + Conj(t(sm))) Ceigenok(sm, eigen(sm)) Ceigenok(sm, eigen(sm, sym=FALSE)) ## ------- tests of integer matrices ----------------- set.seed(123) A <- matrix(rpois(25, 5), 5, 5) A %*% A crossprod(A) tcrossprod(A) solve(A) qr(A) determinant(A, log = FALSE) rcond(A) rcond(A, "I") rcond(A, "1") eigen(A) ## The signs of the 'u' and 'v/vt' components can vary in the next two A0 <- svd(A) A1 <- La.svd(A) ## OK to test == as these are the same Fortran calls. stopifnot(A1$d == A0$d, A1$u == A0$u, A1$vt == t(A0$v)) ## Fix the signs before printing. s <- rep(sign(A0$u[1,]), each=5); A0$u <- s * A0$u; A0$v <- s * A0$v A0 As <- crossprod(A) E <- eigen(As) E$values abs(E$vectors) # signs vary chol(As) backsolve(As, 1:5) ## ------- tests of logical matrices ----------------- set.seed(123) A <- matrix(runif(25) > 0.5, 5, 5) A %*% A crossprod(A) tcrossprod(A) Q <- qr(A) zapsmall(Q$qr) zapsmall(Q$qraux) determinant(A, log = FALSE) # 0 rcond(A) rcond(A, "I") rcond(A, "1") E <- eigen(A) zapsmall(E$values) zapsmall(Mod(E$vectors)) S <- svd(A) zapsmall(S$d) S <- La.svd(A) zapsmall(S$d) As <- A As[upper.tri(A)] <- t(A)[upper.tri(A)] det(As) E <- eigen(As) E$values ## The eigenvectors are of arbitrary sign, so we fix the first element to ## be positive for cross-platform comparisons. Ev <- E$vectors zapsmall(Ev * rep(sign(Ev[1, ]), each = 5)) solve(As) ## quite hard to come up with an example where this might make sense. Ac <- A; Ac[] <- as.logical(diag(5)) chol(Ac) ## ------- tests of non-finite values ----------------- a <- matrix(NaN, 3, 3,, list(one=1:3, two=letters[1:3])) b <- cbind(1:3, NA) dimnames(b) <- list(One=4:6, Two=11:12) bb <- 1:3; names(bb) <- 11:12 ## gave error with LAPACK 3.11.0 solve(a, b) solve(a, bb) A <- a + 0i solve(A, b)