#### eval / parse / deparse / substitute ... #### Part 2 #### ====== Recommended packages allowed .. output tests *sloppily* #### This file is skipped without recommended packages. srcdir <- file.path(Sys.getenv("SRCDIR"), "eval-fns.R") source(if(file.exists(srcdir)) srcdir else "./eval-fns.R", echo = TRUE) rm("srcdir") require("Matrix", .Library) D5. <- Diagonal(x = 5:1) D5N <- D5.; D5N[5,5] <- NA ## a subset/version of example(Matrix) : -------------------------------- (Z32 <- Matrix(0, 3, 2)) # 3 by 2 matrix of zeros -> sparse (z32 <- Matrix(0, 3, 2, sparse=FALSE))# -> 'dense' ## 4 cases - 3 different results : ## TODO (Z22 <- Matrix(0, 2, 2)) # diagonal from Matrix 1.3.* on (Z22. <- Matrix(0, 2, 2, sparse=FALSE))# (ditto) (Z22s <- Matrix(0, 2, 2, doDiag=FALSE))# -> sparse symm. "dsCMatrix" (Z22d <- Matrix(0, 2, 2, sparse=FALSE, doDiag=FALSE))# -> dense symm. "dsyMatrix" ## logical ones: (L4 <- Matrix(diag(4) > 0)) # -> "ldiMatrix" with diag = "U" ## TODO (L4. <- Matrix(diag(4) > 0, sparse=TRUE)) # ditto, from Matrix 1.3.* on (L4d <- Matrix(diag(4) >= 0)) # -> "lsyMatrix" (of all 'TRUE') ## triangular l3 <- upper.tri(matrix(,3,3)) (M <- Matrix(l3)) # "ltCMatrix" (Nl3 <- Matrix(! l3)) # "ltrMatrix" (l3s <- as(l3, "CsparseMatrix"))# "lgCMatrix" (I3 <- Matrix(diag(3)))# identity, i.e., unit "diagonalMatrix" (ad <- cbind(a=c(2,1), b=1:2))# symmetric *apart* from dimnames (As <- Matrix(ad, dimnames = list(NULL,NULL)))# -> symmetric forceSymmetric(ad) # also symmetric, w/ symm. dimnames stopifnot(is(As, "symmetricMatrix"), is(Matrix(0, 3,3), "sparseMatrix"), is(Matrix(FALSE, 1,1), "sparseMatrix")) ## a subset from example(sparseMatrix) : ------------------------------- i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7) A <- sparseMatrix(i, j, x = x) sA <- sparseMatrix(i, j, x = x, symmetric = TRUE) tA <- sparseMatrix(i, j, x = x, triangular= TRUE) ## dims can be larger than the maximum row or column indices AA <- sparseMatrix(c(1,3:8), c(2,9,6:10), x = 7 * (1:7), dims = c(10,20)) ## i, j and x can be in an arbitrary order, as long as they are consistent set.seed(1); (perm <- sample(1:7)) A1 <- sparseMatrix(i[perm], j[perm], x = x[perm]) ## the (i,j) pairs can be repeated, in which case the x's are summed args <- data.frame(i = c(i, 1), j = c(j, 2), x = c(x, 2)) Aa <- do.call(sparseMatrix, args) A. <- do.call(sparseMatrix, c(args, list(use.last.ij = TRUE))) ## for a pattern matrix, of course there is no "summing": nA <- do.call(sparseMatrix, args[c("i","j")]) dn <- list(LETTERS[1:3], letters[1:5]) ## pointer vectors can be used, and the (i,x) slots are sorted if necessary: m <- sparseMatrix(i = c(3,1, 3:2, 2:1), p= c(0:2, 4,4,6), x = 1:6, dimnames = dn) ## no 'x' --> patter*n* matrix: n <- sparseMatrix(i=1:6, j=rev(2:7)) ## an empty sparse matrix: e <- sparseMatrix(dims = c(4,6), i={}, j={}) ## a symmetric one: sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5, dims = c(7,7), symmetric=TRUE) runEPD_checks() # Action! summary(warnings()) ## at the very end cat('Time elapsed: ', proc.time(), "\n")