# File src/library/stats/R/ts-tests.R # Part of the R package, https://www.R-project.org # # Copyright (C) 1995-2015 The R Core Team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ Box.test <- function (x, lag = 1, type=c("Box-Pierce", "Ljung-Box"), fitdf=0) { if (NCOL(x) > 1) stop ("x is not a vector or univariate time series") DNAME <- deparse1(substitute(x)) lag <- as.integer(lag) type <- match.arg(type) cor <- acf (x, lag.max = lag, plot = FALSE, na.action = na.pass) n <- sum(!is.na(x)) PARAMETER <- c(df = lag-fitdf) obs <- cor$acf[2:(lag+1)] if (type=="Box-Pierce") { METHOD <- "Box-Pierce test" STATISTIC <- n*sum(obs^2) PVAL <- 1-pchisq(STATISTIC, lag-fitdf) } else { METHOD <- "Box-Ljung test" STATISTIC <- n*(n+2)*sum(1/seq.int(n-1, n-lag)*obs^2) PVAL <- 1-pchisq(STATISTIC, lag-fitdf) } names(STATISTIC) <- "X-squared" structure(list(statistic = STATISTIC, parameter = PARAMETER, p.value = PVAL, method = METHOD, data.name = DNAME), class = "htest") } PP.test <- function (x, lshort = TRUE) { if (NCOL(x) > 1) stop ("x is not a vector or univariate time series") DNAME <- deparse1(substitute(x)) z <- embed (x, 2) yt <- z[,1] yt1 <- z[,2] n <- length (yt) u <- (1L:n)-n/2 res <- lm(yt ~ 1 + u + yt1) if (res$rank < 3) stop ("singularities in regression") cf <- coef(summary(res)) tstat <- (cf[3,1] - 1) / cf[3,2] u <- residuals (res) ssqru <- sum(u^2)/n l <- if (lshort) trunc(4*(n/100)^0.25) else trunc(12*(n/100)^0.25) ssqrtl <- ssqru + .Call(C_pp_sum, u, l) n2 <- n^2 trm1 <- n2*(n2-1)*sum(yt1^2)/12 trm2 <- n*sum(yt1*(1L:n))^2 trm3 <- n*(n+1)*sum(yt1*(1L:n))*sum(yt1) trm4 <- (n*(n+1)*(2*n+1)*sum(yt1)^2)/6 Dx <- trm1-trm2+trm3-trm4 STAT <- sqrt(ssqru)/sqrt(ssqrtl)*tstat-(n^3)/(4*sqrt(3)*sqrt(Dx)*sqrt(ssqrtl))*(ssqrtl-ssqru) table <- cbind(c(4.38,4.15,4.04,3.99,3.98,3.96), c(3.95,3.80,3.73,3.69,3.68,3.66), c(3.60,3.50,3.45,3.43,3.42,3.41), c(3.24,3.18,3.15,3.13,3.13,3.12), c(1.14,1.19,1.22,1.23,1.24,1.25), c(0.80,0.87,0.90,0.92,0.93,0.94), c(0.50,0.58,0.62,0.64,0.65,0.66), c(0.15,0.24,0.28,0.31,0.32,0.33)) table <- -table tablen <- dim(table)[2L] tableT <- c(25,50,100,250,500,100000) tablep <- c(0.01,0.025,0.05,0.10,0.90,0.95,0.975,0.99) tableipl <- numeric(tablen) for (i in (1L:tablen)) tableipl[i] <- approx (tableT,table[,i],n,rule=2)$y PVAL <- approx (tableipl,tablep,STAT,rule=2)$y PARAMETER <- l METHOD <- "Phillips-Perron Unit Root Test" names(STAT) <- "Dickey-Fuller" names(PARAMETER) <- "Truncation lag parameter" structure(list(statistic = STAT, parameter = PARAMETER, p.value = PVAL, method = METHOD, data.name = DNAME), class = "htest") }