subroutine dpbsl(abd,lda,n,m,b) integer lda,n,m double precision abd(lda,n),b(n) c c dpbsl solves the double precision symmetric positive definite c band system a*x = b c using the factors computed by dpbco or dpbfa. c c on entry c c abd double precision(lda, n) c the output from dpbco or dpbfa. c c lda integer c the leading dimension of the array abd . c c n integer c the order of the matrix a . c c m integer c the number of diagonals above the main diagonal. c c b double precision(n) c the right hand side vector. c c on return c c b the solution vector x . c c error condition c c a division by zero will occur if the input factor contains c a zero on the diagonal. technically this indicates c singularity but it is usually caused by improper subroutine c arguments. it will not occur if the subroutines are called c correctly and info .eq. 0 . c c to compute inverse(a) * c where c is a matrix c with p columns c call dpbco(abd,lda,n,rcond,z,info) c if (rcond is too small .or. info .ne. 0) go to ... c do 10 j = 1, p c call dpbsl(abd,lda,n,c(1,j)) c 10 continue c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas daxpy,ddot c fortran min c c internal variables c double precision ddot,t integer k,kb,la,lb,lm c c solve trans(r)*y = b c do 10 k = 1, n lm = min(k-1,m) la = m + 1 - lm lb = k - lm t = ddot(lm,abd(la,k),1,b(lb),1) b(k) = (b(k) - t)/abd(m+1,k) 10 continue c c solve r*x = y c do 20 kb = 1, n k = n + 1 - kb lm = min(k-1,m) la = m + 1 - lm lb = k - lm b(k) = b(k)/abd(m+1,k) t = -b(k) call daxpy(lm,t,abd(la,k),1,b(lb),1) 20 continue return end