R Under development (unstable) (2021-10-21 r81085) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # File src/library/stats/tests/nls.R > # Part of the R package, https://www.R-project.org > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # A copy of the GNU General Public License is available at > # https://www.R-project.org/Licenses/ > > ## tests of nls, especially of weighted fits > > library(stats) > options(digits = 5) # to avoid trivial printed differences > options(useFancyQuotes = FALSE) # avoid fancy quotes in o/p > options(show.nls.convergence = FALSE) # avoid non-diffable output > options(warn = 1) > > have_MASS <- requireNamespace('MASS', quietly = TRUE) > > pdf("nls-test.pdf") > > ## utility for comparing nls() results: [TODO: use more often below] > .n <- function(r) r[names(r) != "call"] > > ## selfStart.default() w/ no parameters: > logist <- deriv( ~Asym/(1+exp(-(x-xmid)/scal)), c("Asym", "xmid", "scal"), + function(x, Asym, xmid, scal){} ) > logistInit <- function(mCall, LHS, data) { + xy <- sortedXyData(mCall[["x"]], LHS, data) + if(nrow(xy) < 3) stop("Too few distinct input values to fit a logistic") + Asym <- max(abs(xy[,"y"])) + if (Asym != max(xy[,"y"])) Asym <- -Asym # negative asymptote + xmid <- NLSstClosestX(xy, 0.5 * Asym) + scal <- NLSstClosestX(xy, 0.75 * Asym) - xmid + setNames(c(Asym, xmid, scal), + mCall[c("Asym", "xmid", "scal")]) + } > logist <- selfStart(logist, initial = logistInit) ##-> Error in R 1.5.0 > str(logist) function (x, Asym, xmid, scal) - attr(*, "initial")=function (mCall, LHS, data) - attr(*, "class")= chr "selfStart" > ## with parameters and getInitial(): > logist <- selfStart(logist, initial = logistInit, + parameters = c("Asym", "xmid", "scal")) > tools::assertWarning(verbose = TRUE, + in1 <- getInitial(circumference ~ logist(age, Asym, xmid, scal), Orange) + ) # no warning previously Asserted warning: selfStart initializing functions should have a final '...' argument since R 4.1.0 > ## but this then failed, now gives the same warning: > tools::assertWarning(verbose = TRUE, + fm <- nls(circumference ~ logist(age, Asym, xmid, scal), Orange) + ) Asserted warning: selfStart initializing functions should have a final '...' argument since R 4.1.0 > ## in R 4.1.{0,1} gave > ## Error in (attr(object, "initial"))(mCall = mCall, data = data, LHS = LHS, : > ## unused arguments (control = list(.......), trace = FALSE) > ## IGNORE_RDIFF_BEGIN > coef(summary(fm)) Estimate Std. Error t value Pr(>|t|) Asym 192.69 20.244 9.5182 7.4824e-11 xmid 728.76 107.299 6.7919 1.1202e-07 scal 353.53 81.472 4.3393 1.3382e-04 > ## IGNORE_RDIFF_END > > > ## lower and upper in algorithm="port" > set.seed(123) > x <- runif(200) > a <- b <- 1; c <- -0.1 > y <- a+b*x+c*x^2+rnorm(200, sd=0.05) > plot(x,y) > curve(a+b*x+c*x^2, add = TRUE) > ## IGNORE_RDIFF_BEGIN > nls(y ~ a+b*x+c*I(x^2), start = c(a=1, b=1, c=0.1), algorithm = "port") Nonlinear regression model model: y ~ a + b * x + c * I(x^2) data: parent.frame() a b c 1.0058 0.9824 -0.0897 residual sum-of-squares: 0.46 Algorithm "port", convergence message: relative convergence (4) > (fm <- nls(y ~ a+b*x+c*I(x^2), start = c(a=1, b=1, c=0.1), + algorithm = "port", lower = c(0, 0, 0))) Nonlinear regression model model: y ~ a + b * x + c * I(x^2) data: parent.frame() a b c 1.02 0.89 0.00 residual sum-of-squares: 0.468 Algorithm "port", convergence message: both X-convergence and relative convergence (5) > ## IGNORE_RDIFF_END > if(have_MASS) { + print(confint(fm)) + } else message("skipping tests requiring the MASS package") Waiting for profiling to be done... 2.5% 97.5% a 1.00875 1.037847 b 0.84138 0.914645 c NA 0.042807 > > ## weighted nls fit > set.seed(123) > y <- x <- 1:10 > yeps <- y + rnorm(length(y), sd = 0.01) > wts <- rep(c(1, 2), length = 10); wts[5] <- 0 > fit0 <- lm(yeps ~ x, weights = wts) > ## IGNORE_RDIFF_BEGIN > summary(fit0, cor = TRUE) Call: lm(formula = yeps ~ x, weights = wts) Weighted Residuals: Min 1Q Median 3Q Max -0.01562 -0.00723 -0.00158 0.00403 0.02413 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.00517 0.00764 0.68 0.52 x 0.99915 0.00119 841.38 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.0132 on 7 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: 1 F-statistic: 7.08e+05 on 1 and 7 DF, p-value: <2e-16 Correlation of Coefficients: (Intercept) x -0.89 > cf0 <- coef(summary(fit0))[, 1:2] > fit <- nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321), + weights = wts, trace = TRUE) 112.14 (3.04e+02): par = (0.12345 0.54321) 0.0012128 (2.75e-06): par = (0.0051705 0.99915) > summary(fit, cor = TRUE) Formula: yeps ~ a + b * x Parameters: Estimate Std. Error t value Pr(>|t|) a 0.00517 0.00764 0.68 0.52 b 0.99915 0.00119 841.37 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.0132 on 7 degrees of freedom Correlation of Parameter Estimates: a b -0.89 > ## IGNORE_RDIFF_END > stopifnot(all.equal(residuals(fit), residuals(fit0), tolerance = 1e-5, + check.attributes = FALSE)) > stopifnot(df.residual(fit) == df.residual(fit0)) > stopifnot(all.equal(logLik(fit), logLik(fit0), tolerance = 1e-8)) > cf1 <- coef(summary(fit))[, 1:2] > ## IGNORE_RDIFF_BEGIN > fit2 <- nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321), + weights = wts, trace = TRUE, algorithm = "port") 0: 56.070572: 0.123450 0.543210 1: 6.3964587: 1.34546 0.700840 2: 0.00060639084: 0.00517053 0.999153 3: 0.00060639084: 0.00517051 0.999153 > summary(fit2, cor = TRUE) Formula: yeps ~ a + b * x Parameters: Estimate Std. Error t value Pr(>|t|) a 0.00517 0.00764 0.68 0.52 b 0.99915 0.00119 841.38 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.0132 on 7 degrees of freedom Correlation of Parameter Estimates: a b -0.89 Algorithm "port", convergence message: both X-convergence and relative convergence (5) > ## IGNORE_RDIFF_END > cf2 <- coef(summary(fit2))[, 1:2] > rownames(cf0) <- c("a", "b") > # expect relative errors ca 2e-08 > stopifnot(all.equal(cf1, cf0, tolerance = 1e-6), + all.equal(cf1, cf0, tolerance = 1e-6)) > stopifnot(all.equal(residuals(fit2), residuals(fit0), tolerance = 1e5, + check.attributes = FALSE)) > stopifnot(all.equal(logLik(fit2), logLik(fit0), tolerance = 1e-8)) > > > DNase1 <- subset(DNase, Run == 1) > DNase1$wts <- rep(8:1, each = 2) > fm1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), + data = DNase1, weights = wts) > summary(fm1) Formula: density ~ SSlogis(log(conc), Asym, xmid, scal) Parameters: Estimate Std. Error t value Pr(>|t|) Asym 2.3350 0.0966 24.2 3.5e-12 *** xmid 1.4731 0.0947 15.6 8.8e-10 *** scal 1.0385 0.0304 34.1 4.2e-14 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.0355 on 13 degrees of freedom > > ## directly > fm2 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)), + data = DNase1, weights = wts, + start = list(Asym = 3, xmid = 0, scal = 1)) > summary(fm2) Formula: density ~ Asym/(1 + exp((xmid - log(conc))/scal)) Parameters: Estimate Std. Error t value Pr(>|t|) Asym 2.3350 0.0966 24.2 3.5e-12 *** xmid 1.4731 0.0947 15.6 8.8e-10 *** scal 1.0385 0.0304 34.1 4.2e-14 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.0355 on 13 degrees of freedom > stopifnot(all.equal(coef(summary(fm2)), coef(summary(fm1)), tolerance = 1e-6)) > stopifnot(all.equal(residuals(fm2), residuals(fm1), tolerance = 1e-5)) > stopifnot(all.equal(fitted(fm2), fitted(fm1), tolerance = 1e-6)) > fm2a <- nls(density ~ Asym/(1 + exp((xmid - log(conc)))), + data = DNase1, weights = wts, + start = list(Asym = 3, xmid = 0)) > anova(fm2a, fm2) Analysis of Variance Table Model 1: density ~ Asym/(1 + exp((xmid - log(conc)))) Model 2: density ~ Asym/(1 + exp((xmid - log(conc))/scal)) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) 1 14 0.0186 2 13 0.0164 1 0.00212 1.68 0.22 > > ## and without using weights > fm3 <- nls(~ sqrt(wts) * (density - Asym/(1 + exp((xmid - log(conc))/scal))), + data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1)) > summary(fm3) Formula: 0 ~ sqrt(wts) * (density - Asym/(1 + exp((xmid - log(conc))/scal))) Parameters: Estimate Std. Error t value Pr(>|t|) Asym 2.3350 0.0966 24.2 3.5e-12 *** xmid 1.4731 0.0947 15.6 8.8e-10 *** scal 1.0385 0.0304 34.1 4.2e-14 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.0355 on 13 degrees of freedom > stopifnot(all.equal(coef(summary(fm3)), coef(summary(fm1)), tolerance = 1e-6)) > ft <- with(DNase1, density - fitted(fm3)/sqrt(wts)) > stopifnot(all.equal(ft, fitted(fm1), tolerance = 1e-6)) > # sign of residuals is reversed > r <- with(DNase1, -residuals(fm3)/sqrt(wts)) > all.equal(r, residuals(fm1), tolerance = 1e-5) [1] TRUE > fm3a <- nls(~ sqrt(wts) * (density - Asym/(1 + exp((xmid - log(conc))))), + data = DNase1, start = list(Asym = 3, xmid = 0)) > anova(fm3a, fm3) Analysis of Variance Table Model 1: 0 ~ sqrt(wts) * (density - Asym/(1 + exp((xmid - log(conc))))) Model 2: 0 ~ sqrt(wts) * (density - Asym/(1 + exp((xmid - log(conc))/scal))) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) 1 14 0.0186 2 13 0.0164 1 0.00212 1.68 0.22 > > ## using conditional linearity > fm4 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)), + data = DNase1, weights = wts, + start = list(xmid = 0, scal = 1), algorithm = "plinear") > summary(fm4) Formula: density ~ 1/(1 + exp((xmid - log(conc))/scal)) Parameters: Estimate Std. Error t value Pr(>|t|) xmid 1.4731 0.0947 15.6 8.8e-10 *** scal 1.0385 0.0304 34.1 4.2e-14 *** .lin 2.3350 0.0966 24.2 3.5e-12 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.0355 on 13 degrees of freedom > cf <- coef(summary(fm4))[c(3,1,2), ] > rownames(cf)[2] <- "Asym" > stopifnot(all.equal(cf, coef(summary(fm1)), tolerance = 1e-6, + check.attributes = FALSE)) > stopifnot(all.equal(residuals(fm4), residuals(fm1), tolerance = 1e-5)) > stopifnot(all.equal(fitted(fm4), fitted(fm1), tolerance = 1e-6)) > fm4a <- nls(density ~ 1/(1 + exp((xmid - log(conc)))), + data = DNase1, weights = wts, + start = list(xmid = 0), algorithm = "plinear") > anova(fm4a, fm4) Analysis of Variance Table Model 1: density ~ 1/(1 + exp((xmid - log(conc)))) Model 2: density ~ 1/(1 + exp((xmid - log(conc))/scal)) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) 1 14 0.0186 2 13 0.0164 1 0.00212 1.68 0.22 > > ## using 'port' > fm5 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)), + data = DNase1, weights = wts, + start = list(Asym = 3, xmid = 0, scal = 1), + algorithm = "port") > summary(fm5) Formula: density ~ Asym/(1 + exp((xmid - log(conc))/scal)) Parameters: Estimate Std. Error t value Pr(>|t|) Asym 2.3350 0.0966 24.2 3.5e-12 *** xmid 1.4731 0.0947 15.6 8.8e-10 *** scal 1.0385 0.0304 34.1 4.2e-14 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.0355 on 13 degrees of freedom Algorithm "port", convergence message: relative convergence (4) > stopifnot(all.equal(coef(summary(fm5)), coef(summary(fm1)), tolerance = 1e-6)) > stopifnot(all.equal(residuals(fm5), residuals(fm1), tolerance = 1e-5)) > stopifnot(all.equal(fitted(fm5), fitted(fm1), tolerance = 1e-6)) > > ## check profiling > pfm1 <- profile(fm1) > pfm3 <- profile(fm3) > for(m in names(pfm1)) + stopifnot(all.equal(pfm1[[m]], pfm3[[m]], tolerance = 1e-5)) > pfm5 <- profile(fm5) > for(m in names(pfm1)) + stopifnot(all.equal(pfm1[[m]], pfm5[[m]], tolerance = 1e-5)) > if(have_MASS) { + print(c1 <- confint(fm1)) + print(c4 <- confint(fm4, 1:2)) + stopifnot(all.equal(c1[2:3, ], c4, tolerance = 1e-3)) + } Waiting for profiling to be done... 2.5% 97.5% Asym 2.14936 2.5724 xmid 1.28535 1.6966 scal 0.97526 1.1068 Waiting for profiling to be done... 2.5% 97.5% xmid 1.2866 1.6949 scal 0.9757 1.1063 > > ## some low-dimensional examples > npts <- 1000 > set.seed(1001) > x <- runif(npts) > b <- 0.7 > y <- x^b+rnorm(npts, sd=0.05) > a <- 0.5 > y2 <- a*x^b+rnorm(npts, sd=0.05) > c <- 1.0 > y3 <- a*(x+c)^b+rnorm(npts, sd=0.05) > d <- 0.5 > y4 <- a*(x^d+c)^b+rnorm(npts, sd=0.05) > m1 <- c(y ~ x^b, y2 ~ a*x^b, y3 ~ a*(x+exp(logc))^b) > s1 <- list(c(b=1), c(a=1,b=1), c(a=1,b=1,logc=0)) > for(p in 1:3) { + fm <- nls(m1[[p]], start = s1[[p]]) + print(fm) + if(have_MASS) print(confint(fm)) + fm <- nls(m1[[p]], start = s1[[p]], algorithm = "port") + print(fm) + if(have_MASS) print(confint(fm)) + } Nonlinear regression model model: y ~ x^b data: parent.frame() b 0.695 residual sum-of-squares: 2.39 Waiting for profiling to be done... 2.5% 97.5% 0.68704 0.70281 Nonlinear regression model model: y ~ x^b data: parent.frame() b 0.695 residual sum-of-squares: 2.39 Algorithm "port", convergence message: relative convergence (4) Waiting for profiling to be done... 2.5% 97.5% 0.68704 0.70281 Nonlinear regression model model: y2 ~ a * x^b data: parent.frame() a b 0.502 0.724 residual sum-of-squares: 2.51 Waiting for profiling to be done... 2.5% 97.5% a 0.49494 0.50893 b 0.70019 0.74767 Nonlinear regression model model: y2 ~ a * x^b data: parent.frame() a b 0.502 0.724 residual sum-of-squares: 2.51 Algorithm "port", convergence message: relative convergence (4) Waiting for profiling to be done... 2.5% 97.5% a 0.49494 0.50893 b 0.70019 0.74767 Nonlinear regression model model: y3 ~ a * (x + exp(logc))^b data: parent.frame() a b logc 0.558 0.603 -0.176 residual sum-of-squares: 2.44 Waiting for profiling to be done... 2.5% 97.5% a 0.35006 0.66057 b 0.45107 0.91473 logc -0.64627 0.40946 Nonlinear regression model model: y3 ~ a * (x + exp(logc))^b data: parent.frame() a b logc 0.558 0.603 -0.176 residual sum-of-squares: 2.44 Algorithm "port", convergence message: relative convergence (4) Waiting for profiling to be done... 2.5% 97.5% a 0.35006 0.66057 b 0.45107 0.91473 logc -0.64627 0.40946 > > if(have_MASS) { + fm <- nls(y2~x^b, start=c(b=1), algorithm="plinear") + print(confint(profile(fm))) + fm <- nls(y3 ~ (x+exp(logc))^b, start=c(b=1, logc=0), algorithm="plinear") + print(confint(profile(fm))) + } 2.5% 97.5% 0.70019 0.74767 2.5% 97.5% b 0.45105 0.91471 logc -0.64625 0.40933 > > > ## more profiling with bounds > op <- options(digits=3) > npts <- 10 > set.seed(1001) > a <- 2 > b <- 0.5 > x <- runif(npts) > y <- a*x/(1+a*b*x) + rnorm(npts, sd=0.2) > gfun <- function(a,b,x) { + if(a < 0 || b < 0) stop("bounds violated") + a*x/(1+a*b*x) + } > m1 <- nls(y ~ gfun(a,b,x), algorithm = "port", + lower = c(0,0), start = c(a=1, b=1)) > (pr1 <- profile(m1)) $a tau par.vals.a par.vals.b 1 -3.869 0.706 0.000 2 -3.114 0.802 0.000 3 -0.863 1.124 0.000 4 0.000 1.538 0.263 5 0.590 1.952 0.446 6 1.070 2.423 0.592 7 1.534 3.082 0.737 8 1.969 4.034 0.878 9 2.376 5.502 1.014 10 2.751 7.929 1.144 11 3.090 12.263 1.264 12 3.375 20.845 1.373 $b tau par.vals.a par.vals.b 1 -0.673 1.2087 0.0272 2 0.000 1.5381 0.2633 3 0.707 2.0026 0.4994 4 1.365 2.6295 0.7236 5 1.994 3.5762 0.9522 6 2.611 5.1820 1.1962 7 3.225 8.2162 1.4614 8 3.820 17.3946 1.7512 attr(,"original.fit") Nonlinear regression model model: y ~ gfun(a, b, x) data: parent.frame() a b 1.538 0.263 residual sum-of-squares: 0.389 Algorithm "port", convergence message: relative convergence (4) attr(,"summary") Formula: y ~ gfun(a, b, x) Parameters: Estimate Std. Error t value Pr(>|t|) a 1.538 0.617 2.49 0.037 * b 0.263 0.352 0.75 0.476 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.221 on 8 degrees of freedom Algorithm "port", convergence message: relative convergence (4) attr(,"class") [1] "profile.nls" "profile" > if(have_MASS) print(confint(pr1)) 2.5% 97.5% a 0.96 5.20 b NA 1.07 > > gfun <- function(a,b,x) { + if(a < 0 || b < 0 || a > 1.5 || b > 1) stop("bounds violated") + a*x/(1+a*b*x) + } > m2 <- nls(y ~ gfun(a,b,x), algorithm = "port", + lower = c(0, 0), upper=c(1.5, 1), start = c(a=1, b=1)) > profile(m2) $a tau par.vals.a par.vals.b 1 -3.681 0.729 0.000 2 -2.945 0.823 0.000 3 -0.977 1.099 0.000 4 0.000 1.500 0.243 $b tau par.vals.a par.vals.b 1 -0.733 1.18200 0.00395 2 0.000 1.50000 0.24263 3 1.645 1.50000 0.48132 4 2.154 1.50000 0.57869 5 2.727 1.50000 0.70706 6 3.288 1.50000 0.85748 attr(,"original.fit") Nonlinear regression model model: y ~ gfun(a, b, x) data: parent.frame() a b 1.500 0.243 residual sum-of-squares: 0.39 Algorithm "port", convergence message: relative convergence (4) attr(,"summary") Formula: y ~ gfun(a, b, x) Parameters: Estimate Std. Error t value Pr(>|t|) a 1.500 0.598 2.51 0.036 * b 0.243 0.356 0.68 0.514 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.221 on 8 degrees of freedom Algorithm "port", convergence message: relative convergence (4) attr(,"class") [1] "profile.nls" "profile" > if(have_MASS) print(confint(m2)) Waiting for profiling to be done... 2.5% 97.5% a 0.907 NA b NA 0.611 > options(op) > > ## scoping problems > test <- function(trace=TRUE) + { + x <- seq(0,5,len=20) + n <- 1 + y <- 2*x^2 + n + rnorm(x) + xy <- data.frame(x=x,y=y) + myf <- function(x,a,b,c) a*x^b+c + list(with.start= + nls(y ~ myf(x,a,b,n), data=xy, start=c(a=1,b=1), trace=trace), + no.start= ## cheap auto-init to 1 + suppressWarnings( + nls(y ~ myf(x,A,B,n), data=xy))) + } > ## IGNORE_RDIFF_BEGIN > t1 <- test() 8291.9 (1.06e+01): par = (1 1) 726.02 (5.04e+00): par = (0.80544 2.4297) 552.85 (4.45e+00): par = (1.29 2.129) 70.431 (1.29e+00): par = (1.9565 1.967) 26.555 (4.44e-02): par = (1.9788 2.0064) 26.503 (9.35e-05): par = (1.9798 2.0046) 26.503 (7.17e-07): par = (1.9799 2.0046) > ## IGNORE_RDIFF_END > t1$with.start Nonlinear regression model model: y ~ myf(x, a, b, n) data: xy a b 1.98 2.00 residual sum-of-squares: 26.5 > ##__with.start: > ## failed to find n in 2.2.x > ## found wrong n in 2.3.x > ## finally worked in 2.4.0 > ##__no.start: failed in 3.0.2 > ## 2018-09 fails on macOS with Accelerate framework. > stopifnot(all.equal(.n(t1[[1]]), .n(t1[[2]]), check.environment = FALSE)) > rm(a,b) > t2 <- test(FALSE) > stopifnot(all.equal(lapply(t1, .n), + lapply(t2, .n), tolerance = 0.16, # different random error + check.environment = FALSE)) > > > ## list 'start' > set.seed(101)# (remain independent of above) > getExpmat <- function(theta, t) + { + conc <- matrix(nrow = length(t), ncol = length(theta)) + for(i in 1:length(theta)) conc[, i] <- exp(-theta[i] * t) + conc + } > expsum <- as.vector(getExpmat(c(.05,.005), 1:100) %*% c(1,1)) > expsumNoisy <- expsum + max(expsum) *.001 * rnorm(100) > expsum.df <-data.frame(expsumNoisy) > > ## estimate decay rates, amplitudes with default Gauss-Newton > summary (nls(expsumNoisy ~ getExpmat(k, 1:100) %*% sp, expsum.df, + start = list(k = c(.6,.02), sp = c(1,2)))) Formula: expsumNoisy ~ getExpmat(k, 1:100) %*% sp Parameters: Estimate Std. Error t value Pr(>|t|) k1 5.00e-02 2.73e-04 183 <2e-16 *** k2 4.97e-03 4.77e-05 104 <2e-16 *** sp1 1.00e+00 3.96e-03 253 <2e-16 *** sp2 9.98e-01 4.43e-03 225 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.00182 on 96 degrees of freedom > > ## didn't work with port in 2.4.1 > summary (nls(expsumNoisy ~ getExpmat(k, 1:100) %*% sp, expsum.df, + start = list(k = c(.6,.02), sp = c(1,2)), + algorithm = "port")) Formula: expsumNoisy ~ getExpmat(k, 1:100) %*% sp Parameters: Estimate Std. Error t value Pr(>|t|) k1 5.00e-02 2.73e-04 183 <2e-16 *** k2 4.97e-03 4.77e-05 104 <2e-16 *** sp1 1.00e+00 3.96e-03 253 <2e-16 *** sp2 9.98e-01 4.43e-03 225 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.00182 on 96 degrees of freedom Algorithm "port", convergence message: both X-convergence and relative convergence (5) > > > ## PR13540 > > x <- runif(200) > b0 <- c(rep(0,100),runif(100)) > b1 <- 1 > fac <- as.factor(rep(c(0,1), each = 100)) > y <- b0 + b1*x + rnorm(200, sd=0.05) > # next failed in 2.8.1 > fit <- nls(y~b0[fac] + b1*x, start = list(b0=c(1,1), b1=1), + algorithm ="port", upper = c(100, 100, 100)) > # next did not "fail" in proposed fix: > fiB <- nls(y~b0[fac] + b1*x, start = list(b0=c(1,1), b1=101), + algorithm ="port", upper = c(100, 100, 100), + control = list(warnOnly=TRUE))# warning .. Warning in nls(y ~ b0[fac] + b1 * x, start = list(b0 = c(1, 1), b1 = 101), : Convergence failure: initial par violates constraints > with(fiB$convInfo, ## start par. violates constraints + stopifnot(isConv == FALSE, stopCode == 300)) > > > ## PR#17367 -- nls() quoting non-syntactical variable names > ## > op <- options(warn = 2)# no warnings allowed from here > ## > dN <- data.frame('NO [µmol/l]' = c(1,3,8,17), t = 1:4, check.names=FALSE) > fnN <- `NO [µmol/l]` ~ a + k* exp(t) > ## lm() works, nls() should too > lm.N <- lm(`NO [µmol/l]` ~ exp(t) , data = dN) > summary(lm.N) -> slmN > nm. <- nls(`NO [µmol/l]` ~ a + k*exp(t), start=list(a=0,k=1), data = dN) > ## In R <= 3.4.x : Error in eval(predvars, data, env) : object 'NO' not found > nmf <- nls(fnN, start=list(a=0,k=1), data = dN) > ## (ditto; gave identical error) > noC <- function(L) L[-match("call", names(L))] > stopifnot(all.equal(noC (nm.), noC (nmf))) > ## > ## with list for which as.data.frame() does not work [-> different branch, not using model.frame!] > ## list version (has been valid "forever", still doubtful, rather give error [FIXME] ?) > lsN <- c(as.list(dN), list(foo="bar")); lsN[["t"]] <- 1:8 > nmL <- nls(`NO [µmol/l]` ~ a + k*exp(t), start=list(a=0,k=1), data = lsN) > stopifnot(all.equal(coef(nmL), c(a = 5.069866, k = 0.003699669), tol = 4e-7))# seen 4.2e-8 > > ## trivial RHS -- should work even w/o 'start=' > fi1 <- nls(y ~ a, start = list(a=1)) > ## -> 2 deprecation warnings "length 1 in vector-arithmetic" from nlsModel() in R 3.4.x .. > options(op) # warnings about missing 'start' ok: > f.1 <- nls(y ~ a) # failed in R 3.4.x Warning in nls(y ~ a) : No starting values specified for some parameters. Initializing 'a' to '1.'. Consider specifying 'start' or using a selfStart model > stopifnot(all.equal(noC(f.1), noC(fi1)), + all.equal(coef(f.1), c(a = mean(y)))) > > > ##--- New option 'central' for numericDeriv() : > > ## Continuing the pnorm() example from example(numericDeriv): > > mkEnv <- function(n, from = -3, to = 3) { + stopifnot(is.numeric(n), n >= 2) + E <- new.env() + E$mean <- 0. + E$sd <- 1. + E$x <- seq(from, to, length.out = n) + E + } > > pnEnv <- mkEnv(65) # is used inside errE() : > > ## varying eps (very platform dependent?): > errE <- Vectorize(function(eps, central=FALSE) { + grad <- attr(numericDeriv(quote(pnorm(x, mean, sd)), c("mean", "sd"), + pnEnv, eps=eps, central=central), "gradient") + target <- with(pnEnv, -dnorm(x) * cbind(1, x, deparse.level=0L)) + ## return relative error {in the same sense as in all.equal()} : + sum(abs(target - grad)) / sum(abs(target)) + }) > > curve(errE(x), 1e-9, 1e-4, log="xy", n=512, ylim = c(1.5e-11, 5e-7), + xlab = quote(epsilon), ylab=quote(errE(epsilon))) -> rex > axis(1, at = 2^-(52/2), label = quote(sqrt(epsilon[c])), col=4, col.axis=4, line=-1/2) > axis(1, at = 2^-(52/3), label = quote(epsilon[c]^{1/3}), col=4, col.axis=4, line=-1/2) > curve(errE(x, central=TRUE), n=512, col=2, add = TRUE) -> rexC > ## IGNORE_RDIFF_BEGIN > str(xy1 <- approx(rex , xout= sqrt(2^-52)) ) List of 2 $ x: num 1.49e-08 $ y: num 1.56e-08 > str(xy2 <- approx(rexC, xout=(2^-52)^(1/3))) List of 2 $ x: num 6.06e-06 $ y: num 2.4e-11 > ## IGNORE_RDIFF_END > lines(xy1, type="h", col=4) > lines(xy2, type="h", col=4) > > proc.time() user system elapsed 1.125 0.123 1.454