# File src/library/stats/R/princomp.R # Part of the R package, https://www.R-project.org # # Copyright (C) 1995-2015 The R Core Team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ princomp <- function(x, ...) UseMethod("princomp") ## use formula to allow update() to be used. princomp.formula <- function(formula, data = NULL, subset, na.action, ...) { mt <- terms(formula, data = data) if(attr(mt, "response") > 0) stop("response not allowed in formula") cl <- match.call() mf <- match.call(expand.dots = FALSE) mf$... <- NULL ## need stats:: for non-standard evaluation mf[[1L]] <- quote(stats::model.frame) mf <- eval.parent(mf) ## this is not a `standard' model-fitting function, ## so no need to consider contrasts or levels if (.check_vars_numeric(mf)) stop("PCA applies only to numerical variables") na.act <- attr(mf, "na.action") mt <- attr(mf, "terms") # allow model.frame to update it attr(mt, "intercept") <- 0 x <- model.matrix(mt, mf) res <- princomp.default(x, ...) ## fix up call to refer to the generic, but leave arg name as `formula' cl[[1L]] <- as.name("princomp") res$call <- cl if(!is.null(na.act)) { res$na.action <- na.act # not currently used if(!is.null(sc <- res$scores)) res$scores <- napredict(na.act, sc) } res } princomp.default <- function(x, cor = FALSE, scores = TRUE, covmat = NULL, subset = rep_len(TRUE, nrow(as.matrix(x))), ...) { chkDots(...) cl <- match.call() cl[[1L]] <- as.name("princomp") z <- if(!missing(x)) as.matrix(x)[subset, , drop = FALSE] if (is.list(covmat)) { if(any(is.na(match(c("cov", "n.obs"), names(covmat))))) stop("'covmat' is not a valid covariance list") cv <- covmat$cov n.obs <- covmat$n.obs cen <- covmat$center } else if(is.matrix(covmat)) { if(!missing(x)) ## warn only here; x is used for scores when we have 'cen' warning("both 'x' and 'covmat' were supplied: 'x' will be ignored") cv <- covmat n.obs <- NA cen <- NULL } else if(is.null(covmat)){ dn <- dim(z) if(dn[1L] < dn[2L]) stop("'princomp' can only be used with more units than variables") covmat <- cov.wt(z) # returns list, cov() does not n.obs <- covmat$n.obs cv <- covmat$cov * (1 - 1/n.obs)# for S-PLUS compatibility cen <- covmat$center } else stop("'covmat' is of unknown type") if(!is.numeric(cv)) stop("PCA applies only to numerical variables") if (cor) { sds <- sqrt(diag(cv)) if(any(sds == 0)) stop("cannot use 'cor = TRUE' with a constant variable") cv <- cv/(sds %o% sds) } edc <- eigen(cv, symmetric = TRUE) ev <- edc$values if (any(neg <- ev < 0)) { # S-PLUS sets all := 0 ## 9 * : on Solaris found case where 5.59 was needed (MM) if (any(ev[neg] < - 9 * .Machine$double.eps * ev[1L])) stop("covariance matrix is not non-negative definite") else ev[neg] <- 0 } cn <- paste0("Comp.", 1L:ncol(cv)) names(ev) <- cn dimnames(edc$vectors) <- if(missing(x)) list(dimnames(cv)[[2L]], cn) else list(dimnames(x)[[2L]], cn) sdev <- sqrt(ev) sc <- setNames(if (cor) sds else rep.int(1, ncol(cv)), colnames(cv)) scr <- if (scores && !missing(x) && !is.null(cen)) scale(z, center = cen, scale = sc) %*% edc$vectors if (is.null(cen)) cen <- rep(NA_real_, nrow(cv)) edc <- list(sdev = sdev, loadings = structure(edc$vectors, class="loadings"), center = cen, scale = sc, n.obs = n.obs, scores = scr, call = cl) ## The Splus function also return list elements factor.sdev, ## correlations and coef, but these are not documented in the help. ## coef seems to equal load. The Splus function also returns list ## element terms which is not supported here. class(edc) <- "princomp" edc } print.princomp <- function(x, ...) { cat("Call:\n"); dput(x$call, control=NULL) cat("\nStandard deviations:\n") print(x$sdev, ...) cat("\n", length(x$scale), " variables and ", x$n.obs, "observations.\n") invisible(x) }