# File src/library/stats/R/predict.glm.R # Part of the R package, https://www.R-project.org # # Copyright (C) 1995-2012 The R Core Team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ predict.glm <- function(object, newdata = NULL, type = c("link", "response", "terms"), se.fit = FALSE, dispersion = NULL, terms = NULL, na.action = na.pass, ...) { ## 1998/06/23 KH: predict.lm() now merged with the version in lm.R type <- match.arg(type) na.act <- object$na.action object$na.action <- NULL # kill this for predict.lm calls if (!se.fit) { ## No standard errors if(missing(newdata)) { pred <- switch(type, link = object$linear.predictors, response = object$fitted.values, terms = predict.lm(object, se.fit = se.fit, scale = 1, type = "terms", terms = terms) ) if(!is.null(na.act)) pred <- napredict(na.act, pred) } else { pred <- predict.lm(object, newdata, se.fit, scale = 1, type = ifelse(type == "link", "response", type), terms = terms, na.action = na.action) switch(type, response = {pred <- family(object)$linkinv(pred)}, link = , terms = ) } } else { ## summary.survreg has no ... argument. if(inherits(object, "survreg")) dispersion <- 1. if(is.null(dispersion) || dispersion == 0) dispersion <- summary(object, dispersion=dispersion)$dispersion residual.scale <- as.vector(sqrt(dispersion)) pred <- predict.lm(object, newdata, se.fit, scale = residual.scale, type = ifelse(type == "link", "response", type), terms = terms, na.action = na.action) fit <- pred$fit se.fit <- pred$se.fit switch(type, response = { se.fit <- se.fit * abs(family(object)$mu.eta(fit)) fit <- family(object)$linkinv(fit) }, link = , terms = ) if( missing(newdata) && !is.null(na.act) ) { fit <- napredict(na.act, fit) se.fit <- napredict(na.act, se.fit) } pred <- list(fit = fit, se.fit = se.fit, residual.scale = residual.scale) } pred }