# File src/library/stats/R/plot.lm.R # Part of the R package, https://www.R-project.org # # Copyright (C) 1995-2019 The R Core Team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ plot.lm <- function (x, which = c(1,2,3,5), ## was which = 1L:4L, caption = list("Residuals vs Fitted", "Normal Q-Q", "Scale-Location", "Cook's distance", "Residuals vs Leverage", expression("Cook's dist vs Leverage " * h[ii] / (1 - h[ii]))), panel = if(add.smooth) function(x, y, ...) panel.smooth(x, y, iter=iter.smooth, ...) else points, sub.caption = NULL, main = "", ask = prod(par("mfcol")) < length(which) && dev.interactive(), ..., id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75, qqline = TRUE, cook.levels = c(0.5, 1.0), add.smooth = getOption("add.smooth"), iter.smooth = if(isGlm # && binomialLike ) 0 else 3, label.pos = c(4,2), cex.caption = 1, cex.oma.main = 1.25) { dropInf <- function(x, h) { if(any(isInf <- h >= 1.0)) { warning(gettextf("not plotting observations with leverage one:\n %s", paste(which(isInf), collapse=", ")), call. = FALSE, domain = NA) x[isInf] <- NaN } x } if (!inherits(x, "lm")) stop("use only with \"lm\" objects") if(!is.numeric(which) || any(which < 1) || any(which > 6)) stop("'which' must be in 1:6") if((isGlm <- inherits(x, "glm"))) binomialLike <- family(x)$family == "binomial" # || "multinomial" (maybe) show <- rep(FALSE, 6) show[which] <- TRUE r <- if(isGlm) residuals(x, type="pearson") else residuals(x) yh <- predict(x) # != fitted() for glm w <- weights(x) if(!is.null(w)) { # drop obs with zero wt: PR#6640 wind <- w != 0 r <- r[wind] yh <- yh[wind] w <- w[wind] labels.id <- labels.id[wind] } n <- length(r) if (any(show[2L:6L])) { s <- if (inherits(x, "rlm")) x$s else if(isGlm) sqrt(summary(x)$dispersion) else sqrt(deviance(x)/df.residual(x)) hii <- (infl <- influence(x, do.coef = FALSE))$hat if (any(show[4L:6L])) { cook <- cooks.distance(x, infl) ## cook <- ## if (isGlm) ## cooks.distance (x, infl = infl) ## else cooks.distance(x, infl = infl, sd = s, res = r, hat = hii) } } if (any(show[c(2L,3L,5L)])) { ## (Defensive programming used when fusing code for 2:3 and 5) ylab5 <- ylab23 <- if(isGlm) "Std. Pearson resid." else "Standardized residuals" r.w <- if (is.null(w)) r else sqrt(w) * r ## NB: rs is already NaN if r=0, hii=1 rsp <- rs <- dropInf( if (isGlm) rstandard(x, type="pearson") else r.w/(s * sqrt(1 - hii)), hii ) } if (any(show[5L:6L])) { # using 'leverages' r.hat <- range(hii, na.rm = TRUE) # though should never have NA isConst.hat <- all(r.hat == 0) || diff(r.hat) < 1e-10 * mean(hii, na.rm = TRUE) } if (any(show[c(1L, 3L)])) l.fit <- if (isGlm) "Predicted values" else "Fitted values" if (is.null(id.n)) id.n <- 0 else { id.n <- as.integer(id.n) if(id.n < 0L || id.n > n) stop(gettextf("'id.n' must be in {1,..,%d}", n), domain = NA) } if(id.n > 0L) { ## label the largest residuals if(is.null(labels.id)) labels.id <- paste(1L:n) iid <- 1L:id.n show.r <- sort.list(abs(r), decreasing = TRUE)[iid] if(any(show[2L:3L])) show.rs <- sort.list(abs(rs), decreasing = TRUE)[iid] text.id <- function(x, y, ind, adj.x = TRUE) { labpos <- if(adj.x) label.pos[1+as.numeric(x > mean(range(x)))] else 3 text(x, y, labels.id[ind], cex = cex.id, xpd = TRUE, pos = labpos, offset = 0.25) } } getCaption <- function(k) # allow caption = "" , plotmath etc if(length(caption) < k) NA_character_ else as.graphicsAnnot(caption[[k]]) if(is.null(sub.caption)) { ## construct a default: cal <- x$call if (!is.na(m.f <- match("formula", names(cal)))) { cal <- cal[c(1, m.f)] names(cal)[2L] <- "" # drop " formula = " } cc <- deparse(cal, 80) # (80, 75) are ``parameters'' nc <- nchar(cc[1L], "c") abbr <- length(cc) > 1 || nc > 75 sub.caption <- if(abbr) paste(substr(cc[1L], 1L, min(75L, nc)), "...") else cc[1L] } one.fig <- prod(par("mfcol")) == 1 if (ask) { oask <- devAskNewPage(TRUE) on.exit(devAskNewPage(oask)) } ##---------- Do the individual plots : ---------- if (show[1L]) { ylim <- range(r, na.rm=TRUE) if(id.n > 0) ylim <- extendrange(r = ylim, f = 0.08) dev.hold() plot(yh, r, xlab = l.fit, ylab = "Residuals", main = main, ylim = ylim, type = "n", ...) panel(yh, r, ...) if (one.fig) title(sub = sub.caption, ...) mtext(getCaption(1), 3, 0.25, cex = cex.caption) if(id.n > 0) { y.id <- r[show.r] y.id[y.id < 0] <- y.id[y.id < 0] - strheight(" ")/3 text.id(yh[show.r], y.id, show.r) } abline(h = 0, lty = 3, col = "gray") dev.flush() } if (show[2L]) { ## Normal ylim <- range(rs, na.rm=TRUE) ylim[2L] <- ylim[2L] + diff(ylim) * 0.075 dev.hold() qq <- qqnorm(rs, main = main, ylab = ylab23, ylim = ylim, ...) if (qqline) qqline(rs, lty = 3, col = "gray50") if (one.fig) title(sub = sub.caption, ...) mtext(getCaption(2), 3, 0.25, cex = cex.caption) if(id.n > 0) text.id(qq$x[show.rs], qq$y[show.rs], show.rs) dev.flush() } if (show[3L]) { sqrtabsr <- sqrt(abs(rs)) ylim <- c(0, max(sqrtabsr, na.rm=TRUE)) yl <- as.expression(substitute(sqrt(abs(YL)), list(YL=as.name(ylab23)))) yhn0 <- if(is.null(w)) yh else yh[w!=0] dev.hold() plot(yhn0, sqrtabsr, xlab = l.fit, ylab = yl, main = main, ylim = ylim, type = "n", ...) panel(yhn0, sqrtabsr, ...) if (one.fig) title(sub = sub.caption, ...) mtext(getCaption(3), 3, 0.25, cex = cex.caption) if(id.n > 0) text.id(yhn0[show.rs], sqrtabsr[show.rs], show.rs) dev.flush() } if (show[4L]) { ## Cook's Distances if(id.n > 0) { show.r <- order(-cook)[iid]# index of largest 'id.n' ones ymx <- cook[show.r[1L]] * 1.075 } else ymx <- max(cook, na.rm = TRUE) dev.hold() plot(cook, type = "h", ylim = c(0, ymx), main = main, xlab = "Obs. number", ylab = "Cook's distance", ...) if (one.fig) title(sub = sub.caption, ...) mtext(getCaption(4), 3, 0.25, cex = cex.caption) if(id.n > 0) text.id(show.r, cook[show.r], show.r, adj.x=FALSE) dev.flush() } if (show[5L]) { ### Now handled earlier, consistently with 2:3, except variable naming ## ylab5 <- if (isGlm) "Std. Pearson resid." else "Standardized residuals" ## r.w <- residuals(x, "pearson") ## if(!is.null(w)) r.w <- r.w[wind] # drop 0-weight cases ## rsp <- dropInf( r.w/(s * sqrt(1 - hii)), hii ) ylim <- range(rsp, na.rm = TRUE) if (id.n > 0) { ylim <- extendrange(r = ylim, f = 0.08) show.rsp <- order(-cook)[iid] } do.plot <- TRUE if(isConst.hat) { ## leverages are all the same if(missing(caption)) # set different default caption[[5L]] <- "Constant Leverage:\n Residuals vs Factor Levels" ## plot against factor-level combinations instead aterms <- attributes(terms(x)) ## classes w/o response dcl <- aterms$dataClasses[ -aterms$response ] facvars <- names(dcl)[dcl %in% c("factor", "ordered")] mf <- model.frame(x)[facvars]# better than x$model if(ncol(mf) > 0) { dm <- data.matrix(mf) ## #{levels} for each of the factors: nf <- length(nlev <- unlist(unname(lapply(x$xlevels, length)))) ff <- if(nf == 1) 1 else rev(cumprod(c(1, nlev[nf:2]))) facval <- (dm-1) %*% ff xx <- facval # for use in do.plot section. dev.hold() plot(facval, rsp, xlim = c(-1/2, sum((nlev-1) * ff) + 1/2), ylim = ylim, xaxt = "n", main = main, xlab = "Factor Level Combinations", ylab = ylab5, type = "n", ...) axis(1, at = ff[1L]*(1L:nlev[1L] - 1/2) - 1/2, labels = x$xlevels[[1L]]) mtext(paste(facvars[1L],":"), side = 1, line = 0.25, adj=-.05) abline(v = ff[1L]*(0:nlev[1L]) - 1/2, col="gray", lty="F4") panel(facval, rsp, ...) abline(h = 0, lty = 3, col = "gray") dev.flush() } else { # no factors message(gettextf("hat values (leverages) are all = %s\n and there are no factor predictors; no plot no. 5", format(mean(r.hat))), domain = NA) frame() do.plot <- FALSE } } else { ## Residual vs Leverage xx <- hii ## omit hatvalues of 1. xx[xx >= 1] <- NA dev.hold() plot(xx, rsp, xlim = c(0, max(xx, na.rm = TRUE)), ylim = ylim, main = main, xlab = "Leverage", ylab = ylab5, type = "n", ...) panel(xx, rsp, ...) abline(h = 0, v = 0, lty = 3, col = "gray") if (one.fig) title(sub = sub.caption, ...) if(length(cook.levels)) { p <- x$rank # not length(coef(x)) usr <- par("usr") hh <- seq.int(min(r.hat[1L], r.hat[2L]/100), usr[2L], length.out = 101) for(crit in cook.levels) { cl.h <- sqrt(crit*p*(1-hh)/hh) lines(hh, cl.h, lty = 2, col = 2) lines(hh,-cl.h, lty = 2, col = 2) } legend("bottomleft", legend = "Cook's distance", lty = 2, col = 2, bty = "n") xmax <- min(0.99, usr[2L]) ymult <- sqrt(p*(1-xmax)/xmax) aty <- sqrt(cook.levels)*ymult axis(4, at = c(-rev(aty), aty), labels = paste(c(rev(cook.levels), cook.levels)), mgp = c(.25,.25,0), las = 2, tck = 0, cex.axis = cex.id, col.axis = 2) } dev.flush() } # if(const h_ii) .. else .. if (do.plot) { mtext(getCaption(5), 3, 0.25, cex = cex.caption) if (id.n > 0) { y.id <- rsp[show.rsp] y.id[y.id < 0] <- y.id[y.id < 0] - strheight(" ")/3 text.id(xx[show.rsp], y.id, show.rsp) } } } if (show[6L]) { g <- dropInf( hii/(1-hii), hii ) ymx <- max(cook, na.rm = TRUE)*1.025 dev.hold() plot(g, cook, xlim = c(0, max(g, na.rm=TRUE)), ylim = c(0, ymx), main = main, ylab = "Cook's distance", xlab = expression("Leverage " * h[ii]), xaxt = "n", type = "n", ...) panel(g, cook, ...) ## Label axis with h_ii values athat <- pretty(hii) axis(1, at = athat/(1-athat), labels = paste(athat)) if (one.fig) title(sub = sub.caption, ...) ## Draw pretty "contour" lines through origin and label them p <- x$rank bval <- pretty(sqrt(p*cook/g), 5) usr <- par("usr") xmax <- usr[2L] ymax <- usr[4L] for(i in seq_along(bval)) { bi2 <- bval[i]^2 if(p*ymax > bi2*xmax) { xi <- xmax + strwidth(" ")/3 yi <- bi2*xi/p abline(0, bi2, lty = 2) text(xi, yi, paste(bval[i]), adj = 0, xpd = TRUE) } else { yi <- ymax - 1.5*strheight(" ") xi <- p*yi/bi2 lines(c(0, xi), c(0, yi), lty = 2) text(xi, ymax-0.8*strheight(" "), paste(bval[i]), adj = 0.5, xpd = TRUE) } } ## axis(4, at=p*cook.levels, labels=paste(c(rev(cook.levels), cook.levels)), ## mgp=c(.25,.25,0), las=2, tck=0, cex.axis=cex.id) mtext(getCaption(6), 3, 0.25, cex = cex.caption) if (id.n > 0) { show.r <- order(-cook)[iid] text.id(g[show.r], cook[show.r], show.r) } dev.flush() } if (!one.fig && par("oma")[3L] >= 1) mtext(sub.caption, outer = TRUE, cex = cex.oma.main) invisible() }