# File src/library/stats/tests/nls.R # Part of the R package, https://www.R-project.org # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ ## tests of nls, especially of weighted fits library(stats) options(digits = 5) # to avoid trivial printed differences options(useFancyQuotes = FALSE) # avoid fancy quotes in o/p options(show.nls.convergence = FALSE) # avoid non-diffable output options(warn = 1) have_MASS <- requireNamespace('MASS', quietly = TRUE) pdf("nls-test.pdf") ## utility for comparing nls() results: [TODO: use more often below] .n <- function(r) r[names(r) != "call"] ## selfStart.default() w/ no parameters: logist <- deriv( ~Asym/(1+exp(-(x-xmid)/scal)), c("Asym", "xmid", "scal"), function(x, Asym, xmid, scal){} ) logistInit <- function(mCall, LHS, data) { xy <- sortedXyData(mCall[["x"]], LHS, data) if(nrow(xy) < 3) stop("Too few distinct input values to fit a logistic") Asym <- max(abs(xy[,"y"])) if (Asym != max(xy[,"y"])) Asym <- -Asym # negative asymptote xmid <- NLSstClosestX(xy, 0.5 * Asym) scal <- NLSstClosestX(xy, 0.75 * Asym) - xmid setNames(c(Asym, xmid, scal), mCall[c("Asym", "xmid", "scal")]) } logist <- selfStart(logist, initial = logistInit) ##-> Error in R 1.5.0 str(logist) ## lower and upper in algorithm="port" set.seed(123) x <- runif(200) a <- b <- 1; c <- -0.1 y <- a+b*x+c*x^2+rnorm(200, sd=0.05) plot(x,y) curve(a+b*x+c*x^2, add = TRUE) nls(y ~ a+b*x+c*I(x^2), start = c(a=1, b=1, c=0.1), algorithm = "port") (fm <- nls(y ~ a+b*x+c*I(x^2), start = c(a=1, b=1, c=0.1), algorithm = "port", lower = c(0, 0, 0))) if(have_MASS) print(confint(fm)) ## weighted nls fit: unsupported < 2.3.0 set.seed(123) y <- x <- 1:10 yeps <- y + rnorm(length(y), sd = 0.01) wts <- rep(c(1, 2), length = 10); wts[5] <- 0 fit0 <- lm(yeps ~ x, weights = wts) summary(fit0, cor = TRUE) cf0 <- coef(summary(fit0))[, 1:2] fit <- nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321), weights = wts, trace = TRUE) summary(fit, cor = TRUE) stopifnot(all.equal(residuals(fit), residuals(fit0), tolerance = 1e-5, check.attributes = FALSE)) stopifnot(df.residual(fit) == df.residual(fit0)) cf1 <- coef(summary(fit))[, 1:2] fit2 <- nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321), weights = wts, trace = TRUE, algorithm = "port") summary(fit2, cor = TRUE) cf2 <- coef(summary(fit2))[, 1:2] rownames(cf0) <- c("a", "b") # expect relative errors ca 2e-08 stopifnot(all.equal(cf1, cf0, tolerance = 1e-6), all.equal(cf1, cf0, tolerance = 1e-6)) stopifnot(all.equal(residuals(fit2), residuals(fit0), tolerance = 1e5, check.attributes = FALSE)) DNase1 <- subset(DNase, Run == 1) DNase1$wts <- rep(8:1, each = 2) fm1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), data = DNase1, weights = wts) summary(fm1) ## directly fm2 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)), data = DNase1, weights = wts, start = list(Asym = 3, xmid = 0, scal = 1)) summary(fm2) stopifnot(all.equal(coef(summary(fm2)), coef(summary(fm1)), tolerance = 1e-6)) stopifnot(all.equal(residuals(fm2), residuals(fm1), tolerance = 1e-5)) stopifnot(all.equal(fitted(fm2), fitted(fm1), tolerance = 1e-6)) fm2a <- nls(density ~ Asym/(1 + exp((xmid - log(conc)))), data = DNase1, weights = wts, start = list(Asym = 3, xmid = 0)) anova(fm2a, fm2) ## and without using weights fm3 <- nls(~ sqrt(wts) * (density - Asym/(1 + exp((xmid - log(conc))/scal))), data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1)) summary(fm3) stopifnot(all.equal(coef(summary(fm3)), coef(summary(fm1)), tolerance = 1e-6)) ft <- with(DNase1, density - fitted(fm3)/sqrt(wts)) stopifnot(all.equal(ft, fitted(fm1), tolerance = 1e-6)) # sign of residuals is reversed r <- with(DNase1, -residuals(fm3)/sqrt(wts)) all.equal(r, residuals(fm1), tolerance = 1e-5) fm3a <- nls(~ sqrt(wts) * (density - Asym/(1 + exp((xmid - log(conc))))), data = DNase1, start = list(Asym = 3, xmid = 0)) anova(fm3a, fm3) ## using conditional linearity fm4 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)), data = DNase1, weights = wts, start = list(xmid = 0, scal = 1), algorithm = "plinear") summary(fm4) cf <- coef(summary(fm4))[c(3,1,2), ] rownames(cf)[2] <- "Asym" stopifnot(all.equal(cf, coef(summary(fm1)), tolerance = 1e-6, check.attributes = FALSE)) stopifnot(all.equal(residuals(fm4), residuals(fm1), tolerance = 1e-5)) stopifnot(all.equal(fitted(fm4), fitted(fm1), tolerance = 1e-6)) fm4a <- nls(density ~ 1/(1 + exp((xmid - log(conc)))), data = DNase1, weights = wts, start = list(xmid = 0), algorithm = "plinear") anova(fm4a, fm4) ## using 'port' fm5 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)), data = DNase1, weights = wts, start = list(Asym = 3, xmid = 0, scal = 1), algorithm = "port") summary(fm5) stopifnot(all.equal(coef(summary(fm5)), coef(summary(fm1)), tolerance = 1e-6)) stopifnot(all.equal(residuals(fm5), residuals(fm1), tolerance = 1e-5)) stopifnot(all.equal(fitted(fm5), fitted(fm1), tolerance = 1e-6)) ## check profiling pfm1 <- profile(fm1) pfm3 <- profile(fm3) for(m in names(pfm1)) stopifnot(all.equal(pfm1[[m]], pfm3[[m]], tolerance = 1e-5)) pfm5 <- profile(fm5) for(m in names(pfm1)) stopifnot(all.equal(pfm1[[m]], pfm5[[m]], tolerance = 1e-5)) if(have_MASS) { print(c1 <- confint(fm1)) print(c4 <- confint(fm4, 1:2)) stopifnot(all.equal(c1[2:3, ], c4, tolerance = 1e-3)) } ## some low-dimensional examples npts <- 1000 set.seed(1001) x <- runif(npts) b <- 0.7 y <- x^b+rnorm(npts, sd=0.05) a <- 0.5 y2 <- a*x^b+rnorm(npts, sd=0.05) c <- 1.0 y3 <- a*(x+c)^b+rnorm(npts, sd=0.05) d <- 0.5 y4 <- a*(x^d+c)^b+rnorm(npts, sd=0.05) m1 <- c(y ~ x^b, y2 ~ a*x^b, y3 ~ a*(x+exp(logc))^b) s1 <- list(c(b=1), c(a=1,b=1), c(a=1,b=1,logc=0)) for(p in 1:3) { fm <- nls(m1[[p]], start = s1[[p]]) print(fm) if(have_MASS) print(confint(fm)) fm <- nls(m1[[p]], start = s1[[p]], algorithm = "port") print(fm) if(have_MASS) print(confint(fm)) } if(have_MASS) { fm <- nls(y2~x^b, start=c(b=1), algorithm="plinear") print(confint(profile(fm))) fm <- nls(y3 ~ (x+exp(logc))^b, start=c(b=1, logc=0), algorithm="plinear") print(confint(profile(fm))) } ## more profiling with bounds op <- options(digits=3) npts <- 10 set.seed(1001) a <- 2 b <- 0.5 x <- runif(npts) y <- a*x/(1+a*b*x) + rnorm(npts, sd=0.2) gfun <- function(a,b,x) { if(a < 0 || b < 0) stop("bounds violated") a*x/(1+a*b*x) } m1 <- nls(y ~ gfun(a,b,x), algorithm = "port", lower = c(0,0), start = c(a=1, b=1)) (pr1 <- profile(m1)) if(have_MASS) print(confint(pr1)) gfun <- function(a,b,x) { if(a < 0 || b < 0 || a > 1.5 || b > 1) stop("bounds violated") a*x/(1+a*b*x) } m2 <- nls(y ~ gfun(a,b,x), algorithm = "port", lower = c(0, 0), upper=c(1.5, 1), start = c(a=1, b=1)) profile(m2) if(have_MASS) print(confint(m2)) options(op) ## scoping problems test <- function(trace=TRUE) { x <- seq(0,5,len=20) n <- 1 y <- 2*x^2 + n + rnorm(x) xy <- data.frame(x=x,y=y) myf <- function(x,a,b,c) a*x^b+c list(with.start= nls(y ~ myf(x,a,b,n), data=xy, start=c(a=1,b=1), trace=trace), no.start= ## cheap auto-init to 1 suppressWarnings( nls(y ~ myf(x,A,B,n), data=xy))) } t1 <- test(); t1$with.start ##__with.start: ## failed to find n in 2.2.x ## found wrong n in 2.3.x ## finally worked in 2.4.0 ##__no.start: failed in 3.0.2 stopifnot(all.equal(.n(t1[[1]]), .n(t1[[2]]))) rm(a,b) t2 <- test(FALSE) stopifnot(all.equal(lapply(t1, .n), lapply(t2, .n), tolerance = 0.16))# different random error ## list 'start' set.seed(101)# (remain independent of above) getExpmat <- function(theta, t) { conc <- matrix(nrow = length(t), ncol = length(theta)) for(i in 1:length(theta)) conc[, i] <- exp(-theta[i] * t) conc } expsum <- as.vector(getExpmat(c(.05,.005), 1:100) %*% c(1,1)) expsumNoisy <- expsum + max(expsum) *.001 * rnorm(100) expsum.df <-data.frame(expsumNoisy) ## estimate decay rates, amplitudes with default Gauss-Newton summary (nls(expsumNoisy ~ getExpmat(k, 1:100) %*% sp, expsum.df, start = list(k = c(.6,.02), sp = c(1,2)))) ## didn't work with port in 2.4.1 summary (nls(expsumNoisy ~ getExpmat(k, 1:100) %*% sp, expsum.df, start = list(k = c(.6,.02), sp = c(1,2)), algorithm = "port")) ## PR13540 x <- runif(200) b0 <- c(rep(0,100),runif(100)) b1 <- 1 fac <- as.factor(rep(c(0,1), each = 100)) y <- b0 + b1*x + rnorm(200, sd=0.05) # next failed in 2.8.1 fit <- nls(y~b0[fac] + b1*x, start = list(b0=c(1,1), b1=1), algorithm ="port", upper = c(100, 100, 100)) # next did not "fail" in proposed fix: fit <- nls(y~b0[fac] + b1*x, start = list(b0=c(1,1), b1=101), algorithm ="port", upper = c(100, 100, 100), control = list(warnOnly=TRUE))# warning .. with(fit$convInfo, ## start par. violates constraints stopifnot(isConv == FALSE, stopCode == 300))