# File src/library/stats/R/selfStart.R # Part of the R package, https://www.R-project.org # # Copyright (C) 2001-2021 The R Core Team # Copyright (C) 1997,1999 Jose C. Pinheiro and Douglas M. Bates # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ ### ### self-starting nonlinear regression models ### ## see >>> ./zzModels.R <<< for its use in "the standard" SS*() models ## ~~~~~~~~~~ ####* Constructors selfStart <- function(model, initial, parameters, template) UseMethod("selfStart") selfStart.default <- function(model, initial, parameters, template) { structure(as.function(model), initial = as.function(initial), pnames = if(!missing(parameters))parameters, class = "selfStart") } selfStart.formula <- function(model, initial, parameters, template = NULL) { if (is.null(template)) { # create a template if not given nm <- all.vars(model) if (any(msng <- is.na(match(parameters, nm)))) { stop(sprintf(ngettext(sum(msng), "parameter %s does not occur in the model formula", "parameters %s do not occur in the model formula"), paste(sQuote(parameters[msng]), collapse=", ")), domain = NA) } template <- function() {} argNams <- c( nm[ is.na( match(nm, parameters) ) ], parameters ) args <- setNames(rep(alist(a = ), length(argNams)), argNams) formals(template) <- args } structure(deriv(model, parameters, template), initial = as.function(initial), pnames = parameters, class = "selfStart") } ###*# Methods ##*## Generics and methods specific to selfStart models getInitial <- ## Create initial values for object from data function(object, data, ...) UseMethod("getInitial") getInitial.formula <- function(object, data, ...) { if(!is.null(attr(data, "parameters"))) { return(attr(data, "parameters")) } #obj <- object # kluge to create a copy inside this #object[[1L]] <- as.name("~") # function. match.call() is misbehaving switch (length(object), stop("argument 'object' has an impossible length"), { # one-sided formula func <- get(as.character(object[[2L]][[1L]])) getInitial(func, data, mCall = as.list(match.call(func, call = object[[2L]])), ...) }, { # two-sided formula func <- get(as.character(object[[3L]][[1L]])) getInitial(func, data, mCall = as.list(match.call(func, call = object[[3L]])), LHS = object[[2L]], ...) }) } getInitial.selfStart <- function(object, data, mCall, LHS = NULL, ...) { iniFn <- attr(object, "initial") if(length(formals(iniFn)) > 3L) iniFn(mCall = mCall, data = data, LHS = LHS, ...) else { # e.g. for nlme/inst/scripts/ch08.R {twice} .Deprecated(msg= "selfStart initializing functions should have a final '...' argument since R 4.1.0") iniFn(mCall = mCall, data = data, LHS = LHS) } } getInitial.default <- function(object, data, mCall, LHS = NULL, ...) { if (is.function(object) && !is.null(attr(object, "initial"))) { stop("old-style self-starting model functions\n", "are no longer supported.\n", "New selfStart functions are available.\n", "Use\n", " SSfpl instead of fpl,\n", " SSfol instead of first.order.log,\n", " SSbiexp instead of biexp,\n", " SSlogis instead of logistic.\n", "If writing your own selfStart model, see\n", " \"help(selfStart)\"\n", "for the new form of the \"initial\" attribute.", domain = NA) } stop(gettextf("no 'getInitial' method found for \"%s\" objects", data.class(object)), domain = NA) } sortedXyData <- ## Constructor of the sortedXyData class function(x, y, data) UseMethod("sortedXyData") sortedXyData.default <- function(x, y, data) { ## works for x and y either numeric or language elements ## that can be evaluated in data #data <- as.data.frame(data) if (is.language(x) || ((length(x) == 1L) && is.character(x))) { x <- eval(asOneSidedFormula(x)[[2L]], data) } x <- as.numeric(x) if (is.language(y) || ((length(y) == 1L) && is.character(y))) { y <- eval(asOneSidedFormula(y)[[2L]], data) } y <- as.numeric(y) y.avg <- tapply(y, x, mean, na.rm = TRUE) xvals <- as.numeric(chartr(getOption("OutDec"), ".", names(y.avg))) ord <- order(xvals) value <- na.omit(data.frame(x = xvals[ord], y = as.vector(y.avg[ord]))) class(value) <- c("sortedXyData", "data.frame") value } NLSstClosestX <- ## find the x value in the xy frame whose y value is closest to yval function(xy, yval) UseMethod("NLSstClosestX") NLSstClosestX.sortedXyData <- ## find the x value in the xy frame whose y value is closest to yval ## uses linear interpolation in case the desired x falls between ## two data points in the xy frame function(xy, yval) { deviations <- xy$y - yval if (any(deviations==0)) # PR#14384 return(xy$x[match(0, deviations)]) if (any(deviations <= 0)) { dev1 <- max(deviations[deviations <= 0]) lim1 <- xy$x[match(dev1, deviations)] if (all(deviations <= 0)) return(lim1) } if (any(deviations >= 0)) { dev2 <- min(deviations[deviations >= 0]) lim2 <- xy$x[match(dev2, deviations)] if (all(deviations >= 0)) return(lim2) } dev1 <- abs(dev1) dev2 <- abs(dev2) lim1 + (lim2 - lim1) * dev1/(dev1 + dev2) } NLSstRtAsymptote <- ## Find a reasonable value for the right asymptote. function(xy) UseMethod("NLSstRtAsymptote") NLSstRtAsymptote.sortedXyData <- function(xy) { ## Is the last response value closest to the minimum or to ## the maximum? in.range <- range(xy$y) last.dif <- abs(in.range - xy$y[nrow(xy)]) ## Estimate the asymptote as the largest (smallest) response ## value plus (minus) 1/8 of the range. if(match(min(last.dif), last.dif) == 2L) in.range[2L] + diff(in.range)/8 else in.range[1L] - diff(in.range)/8 } NLSstLfAsymptote <- ## Find a reasonable value for the left asymptote. function(xy) UseMethod("NLSstLfAsymptote") NLSstLfAsymptote.sortedXyData <- function(xy) { ## Is the first response value closest to the minimum or to ## the maximum? in.range <- range(xy$y) first.dif <- abs(in.range - xy$y[1L]) ## Estimate the asymptote as the largest (smallest) response ## value plus (minus) 1/8 of the range. if(match(min(first.dif), first.dif) == 2L) in.range[2L] + diff(in.range)/8 else in.range[1L] - diff(in.range)/8 } NLSstAsymptotic <- ## fit the asymptotic regression model in the form ## b0 + b1*exp(-exp(lrc) * x) function(xy) UseMethod("NLSstAsymptotic") NLSstAsymptotic.sortedXyData <- function(xy) { xy$rt <- NLSstRtAsymptote(xy) ## Initial estimate of log(rate constant) from a linear regression setNames(coef(nls(y ~ cbind(1, 1 - exp(-exp(lrc) * x)), data = xy, start = list(lrc = log(-coef(lm(log(abs(y - rt)) ~ x, data = xy))[[2L]])), algorithm = "plinear"))[c(2, 3, 1)], c("b0", "b1", "lrc")) }