# File src/library/stats/R/chisq.test.R # Part of the R package, https://www.R-project.org # # Copyright (C) 1995-2013 The R Core Team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ chisq.test <- function(x, y = NULL, correct = TRUE, p = rep(1/length(x), length(x)), rescale.p = FALSE, simulate.p.value = FALSE, B = 2000) { DNAME <- deparse(substitute(x)) if (is.data.frame(x)) x <- as.matrix(x) if (is.matrix(x)) { # why not just drop()? if (min(dim(x)) == 1L) x <- as.vector(x) } if (!is.matrix(x) && !is.null(y)) { if (length(x) != length(y)) stop("'x' and 'y' must have the same length") DNAME2 <- deparse(substitute(y)) ## omit names on dims if too long (and 1 line might already be too long) xname <- if(length(DNAME) > 1L || nchar(DNAME, "w") > 30) "" else DNAME yname <- if(length(DNAME2) > 1L || nchar(DNAME2, "w") > 30) "" else DNAME2 OK <- complete.cases(x, y) x <- factor(x[OK]) y <- factor(y[OK]) if ((nlevels(x) < 2L) || (nlevels(y) < 2L)) stop("'x' and 'y' must have at least 2 levels") ## Could also call table() with 'deparse.level = 2', but we need ## to deparse ourselves for DNAME anyway ... x <- table(x, y) names(dimnames(x)) <- c(xname, yname) ## unclear what to do here: might abbreviating be preferable? DNAME <- paste(paste(DNAME, collapse = "\n"), "and", paste(DNAME2, collapse = "\n")) } if (any(x < 0) || anyNA(x)) stop("all entries of 'x' must be nonnegative and finite") if ((n <- sum(x)) == 0) stop("at least one entry of 'x' must be positive") if(simulate.p.value) { setMETH <- function() # you shalt not cut_n_paste METHOD <<- paste(METHOD, "with simulated p-value\n\t (based on", B, "replicates)") almost.1 <- 1 - 64 * .Machine$double.eps } if (is.matrix(x)) { METHOD <- "Pearson's Chi-squared test" nr <- as.integer(nrow(x)) nc <- as.integer(ncol(x)) if (is.na(nr) || is.na(nc) || is.na(nr * nc)) stop("invalid nrow(x) or ncol(x)", domain = NA) sr <- rowSums(x) sc <- colSums(x) E <- outer(sr, sc, "*") / n ## Cell residual variance. Essentially formula (2.9) in Agresti(2007). v <- function(r, c, n) c * r * (n - r) * (n - c)/n^3 V <- outer(sr, sc, v, n) dimnames(E) <- dimnames(x) if (simulate.p.value && all(sr > 0) && all(sc > 0)) { setMETH() tmp <- .Call(C_chisq_sim, sr, sc, B, E) ## Sorting before summing may look strange, but seems to be ## a sensible way to deal with rounding issues (PR#3486): STATISTIC <- sum(sort((x - E) ^ 2 / E, decreasing = TRUE)) PARAMETER <- NA ## use correct significance level for a Monte Carlo test PVAL <- (1 + sum(tmp >= almost.1 * STATISTIC)) / (B + 1) } else { if (simulate.p.value) warning("cannot compute simulated p-value with zero marginals") if (correct && nrow(x) == 2L && ncol(x) == 2L) { YATES <- min(0.5, abs(x-E)) if (YATES > 0) METHOD <- paste(METHOD, "with Yates' continuity correction") } else YATES <- 0 STATISTIC <- sum((abs(x - E) - YATES)^2 / E) PARAMETER <- (nr - 1L) * (nc - 1L) PVAL <- pchisq(STATISTIC, PARAMETER, lower.tail = FALSE) } } else { if(length(dim(x)) > 2L) stop("invalid 'x'") if (length(x) == 1L) stop("'x' must at least have 2 elements") if (length(x) != length(p)) stop("'x' and 'p' must have the same number of elements") if(any(p < 0)) stop("probabilities must be non-negative.") if(abs(sum(p)-1) > sqrt(.Machine$double.eps)) { if(rescale.p) p <- p/sum(p) else stop("probabilities must sum to 1.") } METHOD <- "Chi-squared test for given probabilities" E <- n * p V <- n * p * (1 - p) STATISTIC <- sum((x - E) ^ 2 / E) names(E) <- names(x) if(simulate.p.value) { setMETH() nx <- length(x) sm <- matrix(sample.int(nx, B*n, TRUE, prob = p),nrow = n) ss <- apply(sm, 2L, function(x,E,k) { sum((table(factor(x, levels=1L:k)) - E)^2 / E) }, E = E, k = nx) PARAMETER <- NA PVAL <- (1 + sum(ss >= almost.1 * STATISTIC))/(B + 1) } else { PARAMETER <- length(x) - 1 PVAL <- pchisq(STATISTIC, PARAMETER, lower.tail = FALSE) } } names(STATISTIC) <- "X-squared" names(PARAMETER) <- "df" if (any(E < 5) && is.finite(PARAMETER)) warning("Chi-squared approximation may be incorrect") structure(list(statistic = STATISTIC, parameter = PARAMETER, p.value = PVAL, method = METHOD, data.name = DNAME, observed = x, expected = E, residuals = (x - E) / sqrt(E), stdres = (x - E) / sqrt(V) ), class = "htest") }