# File src/library/grDevices/R/smooth2d.R # Part of the R package, https://www.R-project.org # # Copyright (C) 1995-2012 The R Core Team # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # https://www.R-project.org/Licenses/ ## need some standard blues to plot ; output of brewer.pal(9, "Blues"): blues9 <- c("#F7FBFF", "#DEEBF7", "#C6DBEF", "#9ECAE1", "#6BAED6", "#4292C6", "#2171B5", "#08519C", "#08306B") .smoothScatterCalcDensity <- function(x, nbin, bandwidth, range.x) { if (length(nbin) == 1) nbin <- c(nbin, nbin) if (!is.numeric(nbin) || length(nbin) != 2) stop("'nbin' must be numeric of length 1 or 2") if (missing(bandwidth)) { ## cheap bandwidth <- diff(apply(x, 2, stats::quantile, probs = c(0.05, 0.95), na.rm = TRUE, names = FALSE)) / 25 bandwidth[bandwidth==0] <- 1 } else { if(!is.numeric(bandwidth)) stop("'bandwidth' must be numeric") if(any(bandwidth <= 0)) stop("'bandwidth' must be positive") } ## create density map rv <- KernSmooth::bkde2D(x, bandwidth=bandwidth, gridsize=nbin, range.x=range.x) rv$bandwidth <- bandwidth rv } densCols <- function(x, y = NULL, nbin = 128, bandwidth, colramp = colorRampPalette(blues9[-(1:3)])) { ## similar as in plot.default xy <- xy.coords(x, y) ## deal with NA, etc select <- is.finite(xy$x) & is.finite(xy$y) x <- cbind(xy$x, xy$y)[select, ] ## create density map map <- .smoothScatterCalcDensity(x, nbin, bandwidth) ## bin x- and y- values mkBreaks <- function(u) u - diff(range(u))/(length(u)-1)/2 xbin <- cut(x[,1], mkBreaks(map$x1), labels = FALSE) ybin <- cut(x[,2], mkBreaks(map$x2), labels = FALSE) dens <- map$fhat[cbind(xbin, ybin)] dens[is.na(dens)] <- 0 ## transform densities to colors colpal <- cut(dens, length(dens), labels = FALSE) cols <- rep(NA_character_, length(select)) cols[select] <- colramp(length(dens))[colpal] cols }