# File src/library/stats/R/zzModels.R # Part of the R package, http://www.R-project.org # # Copyright 1997, 1999 Jose C. Pinheiro , # Douglas M. Bates # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ ##*## SSasymp - asymptotic regression model SSasymp <- # selfStart(~ Asym + (R0 - Asym) * exp(-exp(lrc) * input), selfStart(function(input, Asym, R0, lrc) { .expr1 <- R0 - Asym .expr2 <- exp(lrc) .expr5 <- exp((( - .expr2) * input)) .value <- Asym + (.expr1 * .expr5) .actualArgs <- as.list(match.call()[c("Asym", "R0", "lrc")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 3), list(NULL, c("Asym", "R0", "lrc"))) .grad[, "Asym"] <- 1 - .expr5 .grad[, "R0"] <- .expr5 .grad[, "lrc"] <- -(.expr1*(.expr5*(.expr2*input))) dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- sortedXyData(mCall[["input"]], LHS, data) if (nrow(xy) < 3) { stop("too few distinct input values to fit an asymptotic regression model") } if(nrow(xy) > 3) { xy$ydiff <- abs(xy$y - NLSstRtAsymptote(xy)) xy <- data.frame(xy) lrc <- log( - coef(lm(log(ydiff) ~ x, data = xy))[2]) names(lrc) <- NULL ## This gives an estimate of the log (rate constant). Use that ## with a partially linear nls algorithm pars <- coef(nls(y ~ cbind(1 - exp( - exp(lrc) * x), exp(- exp(lrc) * x)), data = xy, start = list(lrc = lrc), algorithm = "plinear")) } else { ydiff <- diff(xy$y) if(prod(ydiff) <= 0) { stop("cannot fit an asymptotic regression model to these data") } avg.resp <- xy$y frac <- (avg.resp[3] - avg.resp[1])/(avg.resp[2] - avg.resp[1]) xunique <- unique(xy$x) xdiff <- diff(xunique) if(xdiff[1] == xdiff[2]) { # equal spacing - can use a shortcut expmRd <- frac - 1 rc <- - log(expmRd)/xdiff[1] lrc <- log(rc) expmRx1 <- exp( - rc * xunique[1]) bma <- ydiff[1]/(expmRx1 * (expmRd - 1)) Asym <- avg.resp[1] - bma * expmRx1 pars <- c(lrc = lrc, Asym = Asym, R0 = bma + Asym) } else { stop("too few observations to fit an asymptotic regression model") } } names(pars) <- NULL val <- list(pars[2], pars[3], pars[1]) names(val) <- mCall[c("Asym", "R0", "lrc")] val }, parameters = c("Asym", "R0", "lrc")) ##*## SSasympOff - alternate formulation of asymptotic regression model ##*## with an offset SSasympOff <- # selfStart(~ Asym *( 1 - exp(-exp(lrc) * (input - c0) ) ), selfStart( function(input, Asym, lrc, c0) { .expr1 <- exp(lrc) .expr3 <- input - c0 .expr5 <- exp((( - .expr1) * .expr3)) .expr6 <- 1 - .expr5 .value <- Asym * .expr6 .actualArgs <- as.list(match.call()[c("Asym", "lrc", "c0")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 3), list(NULL, c("Asym", "lrc", "c0"))) .grad[, "Asym"] <- .expr6 .grad[, "lrc"] <- Asym * (.expr5 * (.expr1 * .expr3)) .grad[, "c0"] <- - (Asym * (.expr5 * .expr1)) dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- sortedXyData(mCall[["input"]], LHS, data) if (nrow(xy) < 4) { stop("too few distinct input values to fit the 'asympOff' model") } xy$ydiff <- abs(xy$y - NLSstRtAsymptote(xy)) xy <- data.frame(xy) lrc <- log( - coef(lm(log(ydiff) ~ x, data = xy))[2]) # log( rate constant) pars <- as.vector(coef(nls(y ~ cbind(1, exp(- exp(lrc) * x)), data = xy, algorithm = "plinear", start = list(lrc = lrc)))) val <- list(pars[2], pars[1], exp(-pars[1]) * log(-pars[3]/pars[2])) names(val) <- mCall[c("Asym", "lrc", "c0")] val }, parameters = c("Asym", "lrc", "c0")) ##*## SSasympOrig - exponential curve through the origin to an asymptote SSasympOrig <- # selfStart(~ Asym * (1 - exp(-exp(lrc) * input)), selfStart( function(input, Asym, lrc) { .expr1 <- exp(lrc) .expr4 <- exp((( - .expr1) * input)) .expr5 <- 1 - .expr4 .value <- Asym * .expr5 .actualArgs <- as.list(match.call()[c("Asym", "lrc")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 2), list(NULL, c("Asym", "lrc"))) .grad[, "Asym"] <- .expr5 .grad[, "lrc"] <- Asym * (.expr4 * (.expr1 * input)) dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- sortedXyData(mCall[["input"]], LHS, data) if (nrow(xy) < 3) { stop("too few distinct input values to fit the 'asympOrig' model") } ## get a preliminary estimate for A A0 <- NLSstRtAsymptote(xy) ## get a least squares estimate for log of the rate constant lrc <- log(abs(mean(log(1 - xy$y/A0)/xy$x, na.rm = TRUE))) ## use the partially linear form to converge quickly xy <- data.frame(xy) pars <- as.vector(coef(nls(y ~ 1 - exp(-exp(lrc)*x), data = xy, start = list(lrc = lrc), algorithm = "plinear"))) value <- c(pars[2], pars[1]) names(value) <- mCall[c("Asym", "lrc")] value }, parameters = c("Asym", "lrc")) ##*## SSbiexp - linear combination of two exponentials SSbiexp <- # selfStart(~ A1 * exp(-exp(lrc1)*input) + A2 * exp(-exp(lrc2) * input), selfStart( function(input, A1, lrc1, A2, lrc2) { .expr1 <- exp(lrc1) .expr4 <- exp((( - .expr1) * input)) .expr6 <- exp(lrc2) .expr9 <- exp((( - .expr6) * input)) .value <- (A1 * .expr4) + (A2 * .expr9) .actualArgs <- as.list(match.call()[c("A1", "lrc1", "A2", "lrc2")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 4), list(NULL, c("A1", "lrc1", "A2", "lrc2"))) .grad[, "A1"] <- .expr4 .grad[, "lrc1"] <- - (A1 * (.expr4 * (.expr1 * input))) .grad[, "A2"] <- .expr9 .grad[, "lrc2"] <- - (A2 * (.expr9 * (.expr6 * input))) dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- data.frame(sortedXyData(mCall[["input"]], LHS, data)) if (nrow(xy) < 5) { stop("too few distinct input values to fit a biexponential") } ndistinct <- nrow(xy) nlast <- max(3, round(ndistinct/2)) # take at least half the data dlast <- xy[(ndistinct + 1 - nlast):ndistinct, ] pars2 <- coef(lm(log(y) ~ x, data = dlast)) lrc2 <- log(abs(pars2[2])) # log of the slope xy[["res"]] <- xy[["y"]] - exp(pars2[1]) * exp(-exp(lrc2)*xy[["x"]]) dfirst <- xy[1:(ndistinct - nlast), ] pars1 <- coef(lm(log(abs(res)) ~ x, data = dfirst)) lrc1 <- log(abs(pars1[2])) pars <- coef(nls(y ~ cbind(exp(-exp(lrc1)*x), exp(-exp(lrc2)*x)), data = xy, start = list(lrc1 = lrc1, lrc2 = lrc2), algorithm = "plinear")) value <- c(pars[3], pars[1], pars[4], pars[2]) names(value) <- mCall[c("A1", "lrc1", "A2", "lrc2")] value }, parameters = c("A1", "lrc1", "A2", "lrc2")) ##*## SSfol - first order compartment model with the log of the rates ##*## and the clearence SSfol <- # selfStart(~Dose * exp(lKe + lKa - lCl) * (exp(-exp(lKe) * input) - # exp(-exp(lKa) * input))/(exp(lKa) - exp(lKe)), selfStart( function(Dose, input, lKe, lKa, lCl) { .expr4 <- Dose * (exp(((lKe + lKa) - lCl))) .expr5 <- exp(lKe) .expr8 <- exp((( - .expr5) * input)) .expr9 <- exp(lKa) .expr12 <- exp((( - .expr9) * input)) .expr14 <- .expr4 * (.expr8 - .expr12) .expr15 <- .expr9 - .expr5 .expr16 <- .expr14/.expr15 .expr23 <- .expr15^2 .value <- .expr16 .actualArgs <- as.list(match.call()[c("lKe", "lKa", "lCl")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 3), list(NULL, c("lKe", "lKa", "lCl"))) .grad[, "lKe"] <- ((.expr14 - (.expr4 * (.expr8 * (.expr5 * input))))/ .expr15) + ((.expr14 * .expr5)/.expr23) .grad[, "lKa"] <- ((.expr14 + (.expr4 * (.expr12 * (.expr9 * input))))/ .expr15) - ((.expr14 * .expr9)/.expr23) .grad[, "lCl"] <- - .expr16 dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { data <- data.frame(data) resp <- eval(LHS, data) input <- eval(mCall[["input"]], data) Dose <- eval(mCall[["Dose"]], data) n <- length(resp) if(length(input) != n) { stop("must have length of response = length of second argument to 'SSfol'") } if(n < 4) { stop("must have at least 4 observations to fit an 'SSfol' model") } rmaxind <- order(resp)[n] lresp <- log(resp) if(rmaxind == n) { lKe <- -2.5 } else { lKe <- log((lresp[rmaxind] - lresp[n])/(input[n] - input[rmaxind])) } cond.lin <- nls(resp ~ (exp(-input * exp(lKe))-exp(-input * exp(lKa))) * Dose, data = list(resp = resp, input = input, Dose = Dose, lKe = lKe), start = list(lKa = lKe + 1), algorithm = "plinear") pars <- coef(cond.lin) names(pars) <- NULL cond.lin <- nls(resp ~ (Dose * (exp(-input*exp(lKe))- exp(-input*exp(lKa))))/(exp(lKa) - exp(lKe)), data = data.frame(list(resp = resp, input = input, Dose = Dose)), start = list(lKa = pars[1],lKe = lKe), algorithm = "plinear") pars <- coef(cond.lin) names(pars) <- NULL lKa <- pars[1] lKe <- pars[2] Ka <- exp(lKa) Ke <- exp(lKe) value <- list(lKe, lKa, log((Ke * Ka)/(pars[3]))) names(value) <- as.character(mCall)[4:6] value }, parameters = c("lKe", "lKa", "lCl")) ##*## SSfpl - four parameter logistic model SSfpl <- # selfStart(~ A + (B - A)/(1 + exp((xmid - input)/scal)), selfStart( function(input, A, B, xmid, scal) { .expr1 <- B - A .expr2 <- xmid - input .expr4 <- exp((.expr2/scal)) .expr5 <- 1 + .expr4 .expr8 <- 1/.expr5 .expr13 <- .expr5^2 .value <- A + (.expr1/.expr5) .actualArgs <- as.list(match.call()[c("A", "B", "xmid", "scal")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 4), list(NULL, c("A", "B", "xmid", "scal"))) .grad[, "A"] <- 1 - .expr8 .grad[, "B"] <- .expr8 .grad[, "xmid"] <- - ((.expr1 * (.expr4 * (1/ scal)))/.expr13) .grad[, "scal"] <- (.expr1 * (.expr4 * (.expr2/(scal^2))))/.expr13 dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- sortedXyData(mCall[["input"]], LHS, data) if (nrow(xy) < 5) { stop("too few distinct input values to fit a four-parameter logistic") } ## convert the response to a proportion (i.e. contained in (0,1)) rng <- range(xy$y); drng <- diff(rng) xy$prop <- (xy$y - rng[1] + 0.05 * drng)/(1.1 * drng) ## inverse regression of the x values on the proportion ir <- as.vector(coef(lm(x ~ I(log(prop/(1-prop))), data = xy))) pars <- as.vector(coef(nls(y ~ cbind(1, 1/(1 + exp((xmid - x)/ exp(lscal)))), data = xy, start = list(xmid = ir[1], lscal = log(abs(ir[2]))), algorithm = "plinear"))) value <- c(pars[3], pars[3] + pars[4], pars[1], exp(pars[2])) names(value) <- mCall[c("A", "B", "xmid", "scal")] value }, parameters = c("A", "B", "xmid", "scal")) ##*## SSlogis - logistic model for nonlinear regression SSlogis <- # selfStart(~ Asym/(1 + exp((xmid - input)/scal)), selfStart( function(input, Asym, xmid, scal) { .expr1 <- xmid - input .expr3 <- exp((.expr1/scal)) .expr4 <- 1 + .expr3 .expr10 <- .expr4^2 .value <- Asym/.expr4 .actualArgs <- as.list(match.call()[c("Asym", "xmid", "scal")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 3), list(NULL, c("Asym", "xmid", "scal"))) .grad[, "Asym"] <- 1/.expr4 .grad[, "xmid"] <- - ((Asym * (.expr3 * (1/scal)))/.expr10) .grad[, "scal"] <- (Asym * (.expr3 * (.expr1/(scal^2))))/.expr10 dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- data.frame(sortedXyData(mCall[["input"]], LHS, data)) if(nrow(xy) < 4) { stop("too few distinct input values to fit a logistic model") } z <- xy[["y"]] if (min(z) <= 0) { z <- z - 1.05 * min(z) } # avoid zeroes z <- z/(1.05 * max(z)) # scale to within unit height xy[["z"]] <- log(z/(1 - z)) # logit transformation aux <- coef(lm(x ~ z, xy)) pars <- as.vector(coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)), data = xy, start = list(xmid = aux[1], scal = aux[2]), algorithm = "plinear"))) value <- c(pars[3], pars[1], pars[2]) names(value) <- mCall[c("Asym", "xmid", "scal")] value }, parameters = c("Asym", "xmid", "scal")) ##*## SSmicmen - Michaelis-Menten model for enzyme kinetics. SSmicmen <- # selfStart(~ Vm * input/(K + input), selfStart( function(input, Vm, K) { .expr1 <- Vm * input .expr2 <- K + input .value <- .expr1/.expr2 .actualArgs <- as.list(match.call()[c("Vm", "K")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 2), list(NULL, c("Vm", "K"))) .grad[, "Vm"] <- input/.expr2 .grad[, "K"] <- - (.expr1/(.expr2^2)) dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- data.frame(sortedXyData(mCall[["input"]], LHS, data)) if (nrow(xy) < 3) { stop("too few distinct input values to fit a Michaelis-Menten model") } ## take the inverse transformation pars <- as.vector(coef(lm(1/y ~ I(1/x), data = xy))) ## use the partially linear form to converge quickly pars <- as.vector(coef(nls(y ~ x/(K + x), data = xy, start = list(K = abs(pars[2]/pars[1])), algorithm = "plinear"))) value <- c(pars[2], pars[1]) names(value) <- mCall[c("Vm", "K")] value }, parameters = c("Vm", "K")) SSgompertz <- # selfStart( ~ Asym * exp(-b2*b3^x), ## Gompertz model for growth curve data selfStart(function(x, Asym, b2, b3) { .expr2 <- b3^x .expr4 <- exp(-b2 * .expr2) .value <- Asym * .expr4 .actualArgs <- as.list(match.call()[c("Asym", "b2", "b3")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 3), list(NULL, c("Asym", "b2", "b3"))) .grad[, "Asym"] <- .expr4 .grad[, "b2"] <- -Asym * (.expr4 * .expr2) .grad[, "b3"] <- -Asym * (.expr4 * (b2 * (b3^(x - 1) * x))) dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- sortedXyData(mCall[["x"]], LHS, data) if (nrow(xy) < 4) { stop("too few distinct input values to fit the Gompertz model") } xyL <- xy xyL$y <- log(abs(xyL$y)) pars <- NLSstAsymptotic(xyL) pars <- coef(nls(y ~ exp(-b2*b3^x), data = xy, algorithm = "plinear", start = c(b2 = pars[["b1"]], b3 = exp(-exp(pars[["lrc"]]))))) val <- pars[c(3,1,2)] names(val) <- mCall[c("Asym", "b2", "b3")] val }, c("Asym", "b2", "b3")) SSweibull <- # selfStart( ~ Asym - Drop * exp(-exp(lrc)*x^pwr), ## Weibull model for growth curve data selfStart( function(x, Asym, Drop, lrc, pwr) { .expr1 <- exp(lrc) .expr3 <- x^pwr .expr5 <- exp(-.expr1 * .expr3) .value <- Asym - Drop * .expr5 .actualArgs <- as.list(match.call()[c("Asym", "Drop", "lrc", "pwr")]) if(all(unlist(lapply(.actualArgs, is.name)))) { .grad <- array(0, c(length(.value), 4), list(NULL, c("Asym", "Drop", "lrc", "pwr"))) .grad[, "Asym"] <- 1 .grad[, "Drop"] <- -.expr5 .grad[, "lrc"] <- Drop * (.expr5 * (.expr1 * .expr3)) .grad[, "pwr"] <- Drop * (.expr5 * (.expr1 * (.expr3 * log(x)))) dimnames(.grad) <- list(NULL, .actualArgs) attr(.value, "gradient") <- .grad } .value }, function(mCall, data, LHS) { xy <- sortedXyData(mCall[["x"]], LHS, data) if (nrow(xy) < 5) { stop("too few distinct input values to fit the Weibull growth model") } if (any(xy[["x"]] < 0)) { stop("all 'x' values must be non-negative to fit the Weibull growth model") } Rasym <- NLSstRtAsymptote(xy) Lasym <- NLSstLfAsymptote(xy) pars <- coef(lm(log(-log((Rasym - y)/(Rasym - Lasym))) ~ log(x), data = xy, subset = x > 0)) val <- coef(nls(y ~ cbind(1, -exp(-exp(lrc)*x^pwr)), data = xy, algorithm = "plinear", start = c(lrc = pars[[1]], pwr = pars[[2]])))[ c(3,4,1,2)] names(val) <- mCall[c("Asym", "Drop", "lrc", "pwr")] val }, c("Asym", "Drop", "lrc", "pwr")) ### Local variables: ### mode: S ### End: