predict.glm <- function(object, newdata = NULL, type = c("link", "response", "terms"), se.fit = FALSE, dispersion = NULL, terms=NULL, na.action = na.pass, ...) { ## 1998/06/23 KH: predict.lm() now merged with the version in lm.R type <- match.arg(type) na.act <- object$na.action object$na.action <- NULL # kill this for predict.lm calls if (!se.fit) { ## No standard errors if(missing(newdata)) { pred <- switch(type, link = object$linear.predictors, response = object$fitted, terms = predict.lm(object, se.fit=se.fit, scale = 1, type="terms", terms=terms) ) if(!is.null(na.act)) pred <- napredict(na.act, pred) } else { pred <- predict.lm(object, newdata, se.fit, scale = 1, type = ifelse(type=="link", "response", type), terms = terms, na.action = na.action) switch(type, response = {pred <- family(object)$linkinv(pred)}, link =, terms= ) } } else { ## summary.survreg has no ... argument. if(inherits(object, "survreg")) dispersion <- 1. if(is.null(dispersion) || dispersion == 0) dispersion <- summary(object, dispersion=dispersion)$dispersion residual.scale <- as.vector(sqrt(dispersion)) pred <- predict.lm(object, newdata, se.fit, scale = residual.scale, type = ifelse(type=="link", "response", type), terms = terms, na.action = na.action) fit <- pred$fit se.fit <- pred$se.fit switch(type, response = { se.fit <- se.fit * abs(family(object)$mu.eta(fit)) fit <- family(object)$linkinv(fit) }, link =, terms=) if( missing(newdata) && !is.null(na.act) ) { fit <- napredict(na.act, fit) se.fit <- napredict(na.act, se.fit) } pred <- list(fit=fit, se.fit=se.fit, residual.scale=residual.scale) } pred }