#### "All the examples" from ./R-intro.texi #### -- in a way that this should be(come) an executable script. options(digits=5, width=65)##--- for outputs ! ## 2. Simple Manipulations x <- c(10.4, 5.6, 3.1, 6.4, 21.7) assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7)) c(10.4, 5.6, 3.1, 6.4, 21.7) -> x .Last.value 1/x y <- c(x, 0, x) v <- 2*x + y + 1 ##- Warning message: ##- longer object length ##- is not a multiple of shorter object length in: 2 * x + y sqrt(-17) ##- [1] NaN ##- Warning message: ##- NaNs produced in: sqrt(-17) sqrt(-17+0i) ###-- 2.3 .. regular sequences 1:30 n <- 10 1:n-1 1:(n-1) 30:1 seq(2,10) all(seq(1,30) == seq(to=30, from=1)) seq(-5, 5, by=.2) -> s3 s4 <- seq(length=51, from=-5, by=.2) all.equal(s3,s4) s5 <- rep(x, times=5) s6 <- rep(x, each=5) temp <- x > 13 z <- c(1:3,NA); ind <- is.na(z) 0/0 Inf - Inf labs <- paste(c("X","Y"), 1:10, sep="") labs x <- c(z,z-2)#-- NOT in texi ; more interesting y <- x[!is.na(x)] (x+1)[(!is.na(x)) & x>0] -> z z x <- c(x, 9:12)# long enough: x[1:10] c("x","y")[rep(c(1,2,2,1), times=4)] y <- x[-(1:5)] y fruit <- c(5, 10, 1, 20) names(fruit) <- c("orange", "banana", "apple", "peach") fruit lunch <- fruit[c("apple","orange")] lunch x x[is.na(x)] <- 0 x y <- -4:9 y[y < 0] <- -y[y < 0] all(y == abs(y)) y ###--------------- z <- 0:9 digits <- as.character(z) digits d <- as.integer(digits) all.equal(z, d) e <- numeric() e[3] <- 17 e alpha <- 10*(1:10) alpha <- alpha[2 * 1:5] alpha winter <- data.frame(temp = c(-1,3,2,-2), cat = rep(c("A","B"), 2)) winter unclass(winter) ###------------ Ordered and unordered factors -------- state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa", "qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas", "sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa", "sa", "act", "nsw", "vic", "vic", "act") statef <- factor(state) statef levels(statef) incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56, 61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46, 59, 46, 58, 43) incmeans <- tapply(incomes, statef, mean) incmeans stderr <- function(x) sqrt(var(x)/length(x)) incster <- tapply(incomes, statef, stderr) incster ## z <- 1:1500 dim(z) <- c(3,5,100) x <- array(1:20,dim=c(4,5)) # Generate a 4 by 5 array. x i <- array(c(1:3,3:1),dim=c(3,2)) i # @code{i} is a 3 by 2 index array. x[i] # Extract those elements x[i] <- 0 # Replace those elements by zeros. x n <- 60 b <- 5 ; blocks <- rep(1:b, length= n) v <- 6 ; varieties <- gl(v,10) Xb <- matrix(0, n, b) Xv <- matrix(0, n, v) ib <- cbind(1:n, blocks) iv <- cbind(1:n, varieties) Xb[ib] <- 1 Xv[iv] <- 1 X <- cbind(Xb, Xv) N <- crossprod(Xb, Xv) table(blocks,varieties) all(N == table(blocks,varieties)) h <- 1:17 Z <- array(h, dim=c(3,4,2)) dim(Z) <- c(3,4,2) Z <- array(0, c(3,4,2)) ## So if @code{A}, @code{B} and @code{C} are all similar arrays ## A <- matrix(1:6, 3,2) B <- cbind(1, 1:3) C <- rbind(1, rbind(2, 3:4)) stopifnot(dim(A) == dim(B), dim(B) == dim(C)) ## D <- 2*A*B + C + 1 a <- 1:9 b <- 10*(1:3) ab <- a %o% b stopifnot(ab == outer(a,b,"*"), ab == outer(a,b)) x <- 1:10 y <- -2:2 f <- function(x, y) cos(y)/(1 + x^2) z <- outer(x, y, f) d <- outer(0:9, 0:9) fr <- table(outer(d, d, "-")) plot(as.numeric(names(fr)), fr, type="h", xlab="Determinant", ylab="Frequency") ## B <- aperm(A, c(2,1)) stopifnot(identical(B, t(A))) ## for example, @code{A} and @code{B} are square matrices of the same size ## A <- matrix(1:4, 2,2) B <- A - 1 ## A * B A %*% B ## x <- c(-1, 2) ## x %*% A %*% x x %*% x stopifnot(x %*% x == sum(x^2)) xxT <- cbind(x) %*% x xxT stopifnot(identical(xxT, x %*% rbind(x))) ## crossprod ... (ADD) ## diag ... (ADD) ## linear equations ... (ADD) ## solve ... (ADD) ## eigen: ## a symmetric matrix @code{Sm} ## Sm <- matrix(-2:6, 3); Sm <- (Sm + t(Sm))/4; Sm ## ev <- eigen(Sm) evals <- eigen(Sm)$values ## SVD ..... ## "if M is in fact square, then, ..." ## M <- cbind(1,1:3,c(5,2,3)) X <- cbind(1:9, .25*(-4:4)^2) X1 <- cbind(1:7, -1) X2 <- cbind(0,2:8) y <- c(1:4, 2:6) ## absdetM <- prod(svd(M)$d) stopifnot(all.equal(absdetM, abs(det(M))))# since det() nowadays exists ans <- lsfit(X, y) Xplus <- qr(X) b <- qr.coef(Xplus, y) fit <- qr.fitted(Xplus, y) res <- qr.resid(Xplus, y) ## X <- cbind(1, X1, X2) vec <- as.vector(X) vec <- c(X) statefr <- table(statef) statefr statefr <- tapply(statef, statef, length) statefr factor(cut(incomes, breaks = 35+10*(0:7))) -> incomef table(incomef,statef) ###--- @chapter 6. Lists and data frames Lst <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9)) Lst$name Lst$wife Lst$child.ages[1] stopifnot(Lst$name == Lst[[1]], Lst[[1]] == "Fred", Lst$child.ages[1] == Lst[[4]][1], Lst[[4]][1] == 4 ) x <- "name" ; Lst[[x]] ## @section 6.2 Constructing and modifying lists ## Mat <- cbind(1, 2:4) ## Lst[5] <- list(matrix=Mat) ## @section 6.3 Data frames accountants <- data.frame(home=statef, loot=incomes, shot=incomef) ## MM: add the next lines to R-intro.texi ! accountants str(accountants) ## .......... ###--- @chapter 8. Probability distributions ## 2-tailed p-value for t distribution 2*pt(-2.43, df = 13) ## upper 1% point for an F(2, 7) distribution qf(0.99, 2, 7) attach(faithful) summary(eruptions) fivenum(eruptions) stem(eruptions) hist(eruptions) ## postscript("images/hist.eps", ...) # make the bins smaller, make a plot of density hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE) lines(density(eruptions, bw=0.1)) rug(eruptions) # show the actual data points ## dev.off() plot(ecdf(eruptions), do.points=FALSE, verticals=TRUE) ## postscript("images/ecdf.eps", ...) long <- eruptions[eruptions > 3] plot(ecdf(long), do.points=FALSE, verticals=TRUE) x <- seq(3, 5.4, 0.01) lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3) ## dev.off() par(pty="s") # arrange for a square figure region qqnorm(long); qqline(long) x <- rt(250, df = 5) qqnorm(x); qqline(x) qqplot(qt(ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn") qqline(x) shapiro.test(long) ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long))) ##@section One- and two-sample tests ## scan() from stdin : ## can be cut & pasted, but not parsed and hence not source()d ##scn A <- scan() ##scn 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 ##scn 80.05 80.03 80.02 80.00 80.02 A <- c(79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04, 79.97, 80.05, 80.03, 80.02, 80, 80.02) ##scn B <- scan() ##scn 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97 B <- c(80.02, 79.94, 79.98, 79.97, 79.97, 80.03, 79.95, 79.97) ## postscript("images/ice.eps", ...) boxplot(A, B) ## dev.off() t.test(A, B) var.test(A, B) t.test(A, B, var.equal=TRUE) wilcox.test(A, B) plot(ecdf(A), do.points=FALSE, verticals=TRUE, xlim=range(A, B)) plot(ecdf(B), do.points=FALSE, verticals=TRUE, add=TRUE) ###--- @chapter Grouping, loops and conditional execution ###--- @chapter Writing your own functions ###--- @chapter Statistical models in R ###--- @chapter Graphical procedures ###--- @appendix A sample session ## "Simulate starting a new R session, by rm(list=ls(all=TRUE)) if(interactive()) help.start() x <- rnorm(50) y <- rnorm(x) plot(x, y) ls() rm(x, y) x <- 1:20 w <- 1 + sqrt(x)/2 dummy <- data.frame(x = x, y = x + rnorm(x)*w) dummy fm <- lm(y ~ x, data=dummy) summary(fm) fm1 <- lm(y ~ x, data=dummy, weight=1/w^2) summary(fm1) attach(dummy) lrf <- lowess(x, y) plot(x, y) lines(x, lrf$y) abline(0, 1, lty=3) abline(coef(fm)) abline(coef(fm1), col = "red") detach()# dummy plot(fitted(fm), resid(fm), xlab="Fitted values", ylab="Residuals", main="Residuals vs Fitted") qqnorm(resid(fm), main="Residuals Rankit Plot") rm(fm, fm1, lrf, x, dummy) filepath <- system.file("data", "morley.tab" , package="datasets") file.show(filepath) mm <- read.table(filepath) mm mm$Expt <- factor(mm$Expt) mm$Run <- factor(mm$Run) attach(mm) plot(Expt, Speed, main="Speed of Light Data", xlab="Experiment No.") fm <- aov(Speed ~ Run + Expt, data=mm) summary(fm) fm0 <- update(fm, . ~ . - Run) anova(fm0, fm) detach() rm(fm, fm0) x <- seq(-pi, pi, len=50) y <- x f <- outer(x, y, function(x, y) cos(y)/(1 + x^2)) oldpar <- par(no.readonly = TRUE) par(pty="s") contour(x, y, f) contour(x, y, f, nlevels=15, add=TRUE) fa <- (f-t(f))/2 contour(x, y, fa, nlevels=15) par(oldpar) image(x, y, f) image(x, y, fa) objects(); rm(x, y, f, fa) th <- seq(-pi, pi, len=100) z <- exp(1i*th) par(pty="s") plot(z, type="l") w <- rnorm(100) + rnorm(100)*1i w <- ifelse(Mod(w) > 1, 1/w, w) plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+",xlab="x", ylab="y") lines(z) w <- sqrt(runif(100))*exp(2*pi*runif(100)*1i) plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+", xlab="x", ylab="y") lines(z) rm(th, w, z) ## q()