
A Structure for Interfaces from R

John M. Chambers

July 1, 2016

(Extending R, Chapter 13)

Language Interfaces
Design goals

convenience:

Programming an application package to use an
interface should be straightforward.
The users of the application should be largely
unaware of the interface, just doing ordinary R
computations.

generality:

Any server language function or class of objects
should be available.
Results should be available as the appropriate R
class of object.

consistency: The interface programming for similar computations
should be independent of the details of the server
language implementation.

Preliminaries

The languages here are those that evaluate user calls to
functions or methods and have some form of class structure.
(Python, Java, Julia, Perl, JavaScript, ...).

I’ll call these server languages, but that doesn’t imply a
particular communication mechanism.

We’re talking about interfaces from R; interfaces to R exist
also, but our topic is extending R.

All the packages mentioned are on github at
github.com/johnmchambers

This is new stu↵; you’re welcome to try it out but there isn’t
a lot of experience yet.

github.com/johnmchambers

The XR Interface Structure

For extending R using interface(s), think of three levels of
packages:

1 The XR package defines

a class of evaluators that communicate to a server language;
methods for creating proxy objects, functions and classes;
functions for data conversion between the languages.

2 An interface package for individual languages (XRPython,
XRJulia) to create proxies and do anything else needed.
The interface for the language specializes the XR structure:

3 Application packages (what you would write): they will create
functions and classes proxies for the server language(s), using
the interface for one or more languages, usually through simple
function calls (e.g., JuliaFunction(), setPythonClass().

Evaluators

An evaluator is an object from some interface class (e.g.,
"PythonInterface") that extends the "Interface" class in the XR
package (a reference class).

Evaluators have methods to evaluate expressions, get and
send objects, carry out commands in the server language.

The methods look the same and work the same for all
languages, except when it makes no sense (e.g., Java has
methods, not functions).

The structure is specialized to a server language by overriding
low-level methods for evaluators and by OOP methods in R
and often in the server language as well.

Evaluators

An evaluator is an object from some interface class (e.g.,
"PythonInterface") that extends the "Interface" class in the XR
package (a reference class).

XR manages all the evaluators. In particular, if there is a
“current” evaluator for a language, that can be used
automatically.

The result of computing any expression is returned to R. That
object can be used in any subsequent evaluator method.

Everything is based on the layer of evaluators & methods, but
proxy functions, proxy classes and functional shortcuts hide
evaluators from most applications.

Evaluators

ev <- RPython()

ev$Import("xml.etree.ElementTree")

hamlet <- ev$Call("xml.etree.ElementTree.parse",

"hamlet.xml")

ev$Eval("%s.findtext(’TITLE’)", hamlet)

Proxy Objects

XR interfaces call arbitrary functions by assigning the value of the
call in the server and returning from R a proxy for that object.

Current interfaces convert & return scalars; anything else is a
proxy.

The evaluator assigns the value of an expression and returns a
proxy containing the name used. So supplying the proxy later
on just accesses the object by name.

Note that the evaluator does assignments in the server; you
don’t need to and usually shouldn’t.

If you need the result to be converted, there are methods and
optional arguments to force that.

Proxy Functions

Often, you want to call a function in the server language, from R.
Functions in R that are proxies for the server language functions
make this simple, and eliminate the need to use an evaluator
explicitly.

A one-line expression in the application package creates the
proxy function.

These are from a subclass of R functions, so users call them
just like any function.

If server languages have metadata about functions, that may
be included in the proxy (e.g., Python functions can have
documentation.)

Application packages are encouraged to include their own
server language software, and make proxy functions for that.

Proxy Functions

parseXML <- PythonFunction("parse", "xml.etree.ElementTree")

hamlet <- parseXML("hamlet.xml")

getSpeeches <- PythonFunction("getSpeeches", "thePlay")

hSpeeches <- getSpeeches(hamlet)

Proxy Classes

If a proxy object comes from a particular class in the server
language, defining a corresponding proxy class in R allows fields
and methods to be used directly from R.

A one-line expression in the application package creates a
(reference) class in R that is a proxy for the specified server
language class.

Metadata about the server language class is used to define the
fields and methods for the proxy.

Server language fields and methods can be used like fields and
methods in R; for example, x$title, x$append().

Proxy Classes

If the proxy class is defined, proxy objects from that class are
promoted to the class automatically.

As with functions, it’s often valuable for the application
package to define its own server language classes and make
proxies for them.

setPythonClass("Speech", module = "thePlay")

last <- hSpeeches$pop()

last$speaker

Specializing to the Server Language

$ServerExpression(expr,...) Encode expr, objects as string

$ServerEval(string, key, .get) Evaluate string, return
proxy or convert.

$ServerFunctionDef(what,...)

$ServerClassDef(ClassName,...)

$ServerSerialize(key, file)

$ServerUnSerialize(file)

$ServerAddToPath(directory, pos)

$Import(module,...)

$Source(file)

Data Conversion

The XR approach to converting objects between R and the server
language is to provide conventions for explicit representation of
arbitrary objects, plus mechanisms for this to be specialized.

Basic objects in R (vectors and some other types) are
converted using the JSON representation: scalars, lists,
dictionaries.

Conventions using specially named elements in dictionaries
allow objects to be converted recursively in terms of their
fields.

The general mechanism is specialized by defining methods for
two generic functions in R: asServerObject() and
asRObject().
Classes in the two languages that match (e.g., arrays in Julia
and R) handled by OOP methods in one or both languages.

