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What makes R great

• Great for open-ended ad-hoc analysis 

• “Most versatile analytics tool” 

• Working with data just feels natural, data is “tangible” 

• Almost anything I might want to do with my data feels quickly 
well within reach 

• Thanks in large part to design of R for interactive analysis and a 
lot of packages and vis tools

FLEXIBILITY

However, when it comes to “big data”, we can 
easily lose this flexibility



Things we hear about big data

• We can rely on other systems / engineers to 
process / aggregate the data for us 

• We can rely on other systems to apply algorithms to 
the data while we analyze the small results in R 

• We can analyze it in RAM 

• We can analyze just a subset of the data

While these are often true, they are often not, and if we 
concede to any of these, we lose a lot of flexibility that is 

absolutely necessary for a lot of problems



“We can rely on other systems / engineers 
to process / aggregate the data for us”

• Analyzing summaries is better than not doing anything at all 

• But computing summaries without understanding what 
information is preserved or lost in the process goes against 
all statistical sense 

• If the first thing you do is summarize without any 
investigation of the full data, what’s the point of having 
collected the finer-granularity data in the first place?

NOT FLEXIBLE
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Example: Analysis of power grid data

• Study of a 2 TB data set of high frequency measurements at several 
locations on the power grid (measurements of 500 variables at 30 Hz) 

• Previous approach was to study 5-minute-aggregated summary 
statistics (9000x reduction of the data) 

• Looking at the full data grouped into 5-minute subsets suggested 
several summaries that captured a lot more information 

• First-order autocorrelation 

• Distribution of repeating sequence length for each discrete 
frequency value 

• etc.

This led to the discovery and statistical 
characterization of a significant 
amount of bad sensor data previously 
unnoticed (~20% of the data!).



“We can rely on other systems to apply 
algorithms to big data and simply analyze the 

small results in R”

• Most big data systems I've seen only give you a handful of 
algorithms 

• We need to be able to apply ad-hoc code 

• R has thousands of packages… 

• In the power grid example, we needed to specify ad-hoc 
algorithms such as repeated sequence, ACF, etc. 

• Also, what about diagnostics?

NOT FLEXIBLE



“We can analyze it in RAM”

• It’s great when we can do it but it’s not always possible 

• R makes copies, which is not RAM friendly 

• It’s natural in data analysis in general to make copies - the 
structure of our data for a given analysis task is a first class 
concern (different copies / structures for different things) 

• Trying to manage a single set of data in some RAM-optimal way 
and avoid copies can result in unnatural / uncomfortable coding 
for analysis 

• It's not just RAM, it’s also needing more cores than you can get on 
one machine - once things get distributed, everything gets more 
complicated

NOT FLEXIBLE



“We can analyze a subset of the data”

• Analyze a subset in a local session to get a feel for 
what is going on 

• We should be in local R as often as possible 

• However, if you cannot take an interesting calculation 
or result from studying a subset and apply it to all or a 
larger portion of the data in a distributed fashion 
(using R), it is...

NOT FLEXIBLE

This is a good idea



• 80% of tasks / use cases fit a relatively nice, clean, simple 
abstraction (e.g. data frames, in-memory, simple 
aggregations, etc.) 

• 20% do not (ad-hoc data structures, models, large data, etc.) 

• But to do effective analysis, in my experience, tasks almost 
always span the full 100%

For small data, R does a great job spanning the full 100% 
For big data, most R tools just cover the 80%

With data analysis, large or small, the 80/20 rule seems to 
apply in many cases:



• 80%: fits in memory 

• 20%: larger than memory - 
must be distributed

Data Size

What can we do to address the 20%? 

• Connect R to distributed systems 

• Provide R-like interfaces to these systems
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• 80%: data frames of standard types 

• 20%: more complex structures 

• ~15%: fits into Hadley's data frames with “list columns” 
paradigm 

• ~5%: unstructured / arbitrary

Data Structures

What can we do to address the 20%? 

• Storage abstractions that allow for ad-hoc data structures (key-
value stores are good for this) 

• Data frames as a special case of these 

• In datadr, we have ddo (ad-hoc) and ddf (data frame) objects 

• In ddR, there are lists, arrays, data frames, which covers it



• 80%: data is partitioned in whatever way it was 
collected 

• 20%: re-group / shuffle the data in a way meaningful 
to the analysis (the split in split-apply-combine)

Data partitioning

• This is the way of Divide and Recombine (D&R) 

• Meaningful grouping of data enables meaningful application 
of ad-hoc R code (e.g. apply a method to each host) 

• But requires the ability to shuffle data, which is not trivial 

• Systems that support MapReduce can do this



• 80%: aggregation / queries / handful of statistical / 
ML methods 

• 20%: any ad-hoc R code / scalable vis

Flexibility of Methods

What can we do to address the 20%? 

• We need to be able to run R processes on the nodes of a 
cluster against each chunk of the data 

• Usually this makes most sense when the chunking is 
intentional (hence the importance of being able to 
repartition the data)



A note on scalable visualization

• The ability to intentionally group distributed data is 
critical for scalable statistical visualization 

• Trelliscope is a scalable framework for detailed 
visualization that provides a way to meaningfully 
navigate faceted plots applied to each subset of 
the data 

• Demo of prototype pure JS, client-side Trelliscope 
viewer: http://hafen.github.io/trelliscopejs-demo/

http://hafen.github.io/trelliscopejs-demo/


We need tools that support the 20%

• 80/20 is not a dichotomy (except maybe for 
separating big data vs. small data problems) 

• Inside either the big / small setting, our tasks 
almost always span the full 100% 

• Just because 80 is the majority doesn't mean the 
20 isn't important



Summary of needs

• Support for arbitrary data structures 

• Ability to shuffle / regroup data in a scalable fashion 

• R executing at the data on a cluster 

• Others?

Things (I think) we need to make sure we 
accommodate to achieve flexibility with big data:



Some thoughts…
• Data abstraction and primitives for computing on them: ddR 

• Is it flexible enough? 

• Can it provide the ability to group data? 

• Interfaces: 

• datadr: goal is to address full 100% - too esoteric? 

• dplyr: with sparklyr, list columns, group_by(), and do() (plus 
everything else), we are in good shape for a vast majority of cases 

• purrr: would be a nice interface for non-data-frame case 

• Distributed R execution engines 

• Hadoop (RHIPE, hmr, rhadoop), sparkapi, SparkR, ROctopus, etc. 

• Are there “best practices” these should accommodate for being 
useful to many projects?



Discussion
• What can we standardize? 

• Can we modify existing 80% solutions to provide 
capabilities that help address the 20% cases? 

• Can we build a consensus on basic functionality that will 
support flexibility for multiple projects?


