R version 3.4.3 Patched (2018-02-11 r74243) -- "Kite-Eating Tree"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.4.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(nlme)
> 
> op <- options(digits = 3) # reduce rounding differences
> 
> Ovary[c(1,272), 2] <- NA
> fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
+            correlation = corAR1(form = ~ 1 | Mare), na.action=na.exclude)
> fitted(fm1)
    1     2     3     4     5     6     7     8     9    10    11    12    13 
   NA 12.86 12.06 11.27 10.55  9.96  9.54  9.34  9.36  9.60 10.05 10.67 11.41 
   14    15    16    17    18    19    20    21    22    23    24    25    26 
12.21 13.00 13.71 14.31 14.72 14.93 14.91 14.66 14.21 13.59 12.86 12.06 11.27 
   27    28    29    30    31    32    33    34    35    36    37    38    39 
10.55  9.96  9.54 13.79 13.01 12.14 11.27 10.49  9.86  9.46  9.32  9.45  9.85 
   40    41    42    43    44    45    46    47    48    49    50    51    52 
10.47 11.26 12.13 13.00 13.78 14.41 14.81 14.95 14.81 14.41 13.79 13.01 12.14 
   53    54    55    56    57    58    59    60    61    62    63    64    65 
11.27 10.49  9.86  9.46 13.90 13.10 12.19 11.27 10.45  9.81  9.42  9.32  9.53 
   66    67    68    69    70    71    72    73    74    75    76    77    78 
10.03 10.75 11.62 12.54 13.42 14.17 14.69 14.93 14.87 14.52 13.90 13.10 12.19 
   79    80    81    82    83    84    85    86    87    88    89    90    91 
11.27 10.45  9.81  9.42 13.59 12.86 12.06 11.27 10.55  9.96  9.54  9.34  9.36 
   92    93    94    95    96    97    98    99   100   101   102   103   104 
 9.60 10.05 10.67 11.41 12.21 13.00 13.71 14.31 14.72 14.93 14.91 14.66 14.21 
  105   106   107   108   109   110   111   112   113   114   115   116   117 
13.59 12.86 12.06 11.27 10.55  9.96  9.54 13.59 12.86 12.06 11.27 10.55  9.96 
  118   119   120   121   122   123   124   125   126   127   128   129   130 
 9.54  9.34  9.36  9.60 10.05 10.67 11.41 12.21 13.00 13.71 14.31 14.72 14.93 
  131   132   133   134   135   136   137   138   139   140   141   142   143 
14.91 14.66 14.21 13.59 12.86 12.06 11.27 10.55  9.96  9.54 13.59 12.86 12.06 
  144   145   146   147   148   149   150   151   152   153   154   155   156 
11.27 10.55  9.96  9.54  9.34  9.36  9.60 10.05 10.67 11.41 12.21 13.00 13.71 
  157   158   159   160   161   162   163   164   165   166   167   168   169 
14.31 14.72 14.93 14.91 14.66 14.21 13.59 12.86 12.06 11.27 10.55  9.96  9.54 
  170   171   172   173   174   175   176   177   178   179   180   181   182 
13.79 13.01 12.14 11.27 10.49  9.86  9.46  9.32  9.45  9.85 10.47 11.26 12.13 
  183   184   185   186   187   188   189   190   191   192   193   194   195 
13.00 13.78 14.41 14.81 14.95 14.81 14.41 13.79 13.01 12.14 11.27 10.49  9.86 
  196   197   198   199   200   201   202   203   204   205   206   207   208 
 9.46 13.42 12.73 11.99 11.27 10.61 10.05  9.63  9.38  9.32  9.45  9.77 10.24 
  209   210   211   212   213   214   215   216   217   218   219   220   221 
10.85 11.54 12.27 13.00 13.66 14.22 14.64 14.88 14.94 14.81 14.50 14.02 13.42 
  222   223   224   225   226   227   228   229   230   231   232   233   234 
12.73 11.99 11.27 10.61 10.05  9.63 14.02 13.19 12.24 11.27 10.41  9.75  9.38 
  235   236   237   238   239   240   241   242   243   244   245   246   247 
 9.35  9.64 10.24 11.07 12.03 13.00 13.86 14.52 14.88 14.92 14.62 14.02 13.19 
  248   249   250   251   252   253   254   255   256   257   258   259   260 
12.24 11.27 10.41  9.75  9.38 13.59 12.86 12.06 11.27 10.55  9.96  9.54  9.34 
  261   262   263   264   265   266   267   268   269   270   271   272   273 
 9.36  9.60 10.05 10.67 11.41 12.21 13.00 13.71 14.31 14.72 14.93    NA 14.66 
  274   275   276   277   278   279   280   281   282   283   284   285   286 
14.21 13.59 12.86 12.06 11.27 10.55  9.96  9.54 13.79 13.01 12.14 11.27 10.49 
  287   288   289   290   291   292   293   294   295   296   297   298   299 
 9.86  9.46  9.32  9.45  9.85 10.47 11.26 12.13 13.00 13.78 14.41 14.81 14.95 
  300   301   302   303   304   305   306   307   308 
14.81 14.41 13.79 13.01 12.14 11.27 10.49  9.86  9.46 
attr(,"label")
[1] "Fitted values"
> residuals(fm1)
       1        2        3        4        5        6        7        8 
      NA   2.1439   6.9394   4.7290   2.4488   0.0405   2.4560   4.6618 
       9       10       11       12       13       14       15       16 
  3.6412  10.3959  11.9456   4.3270   6.5900   4.7945   1.0049   4.2851 
      17       18       19       20       21       22       23       24 
 -0.3066   1.2779   2.0720   3.0927   3.3380   2.7883   0.4069  -0.8561 
      25       26       27       28       29       30       31       32 
 -0.0606   2.7290  -0.5512   1.0405   6.4560  -7.7936  -7.0102  -4.1410 
      33       34       35       36       37       38       39       40 
 -4.2710   5.5146   0.1390   3.5409  -0.3189  -2.4542  -3.8517  -2.4725 
      41       42       43       44       45       46       47       48 
 -3.2559  -6.1251  -4.9951  -6.7808  -5.4051  -8.8070 -10.9472  -9.8119 
      49       50       51       52       53       54       55       56 
 -6.4144  -2.7936  -0.0102  -2.1410  -5.2710  -3.4854  -3.8610  -4.4591 
      57       58       59       60       61       62       63       64 
 -0.9042  -2.0982  -2.1875  -5.2710  -2.4479  -3.8074  -0.4189  -0.3245 
      65       66       67       68       69       70       71       72 
  0.4655  -2.0261   3.2540   1.3838   1.4576   2.5757   5.8338   6.3122 
      73       74       75       76       77       78       79       80 
 10.0674   8.1260   4.4817   8.0958   2.9018   8.8125   7.7290   9.5521 
      81       82       83       84       85       86       87       88 
  7.1926  14.5811  -4.5931  -3.8561  -5.0606  -5.2710  -3.5512  -3.9595 
      89       90       91       92       93       94       95       96 
 -8.5440  -8.3382  -8.3588  -4.6041  -4.0544  -7.6730  -6.4100  -9.2055 
      97       98       99      100      101      102      103      104 
 -6.9951  -5.7149  -8.3066  -9.7221  -8.9280  -6.9073  -3.6620  -0.2117 
     105      106      107      108      109      110      111      112 
 -5.5931  -3.8561  -2.0606  -4.2710  -3.5512  -3.9595   1.4560  -3.5931 
     113      114      115      116      117      118      119      120 
 -0.8561  -0.0606   5.7290  -1.5512   0.0405  -6.5440   2.6618   3.6412 
     121      122      123      124      125      126      127      128 
 -0.6041  -6.0544  -3.6730  -7.4100  -0.2055   1.0049  -1.7149   0.6934 
     129      130      131      132      133      134      135      136 
  2.2779   0.0720  -1.9073   3.3380   4.7883  -0.5931  -3.8561  -0.0606 
     137      138      139      140      141      142      143      144 
 -3.2710  -0.5512  -4.9595   4.4560   2.4069   4.1439   0.9394   5.7290 
     145      146      147      148      149      150      151      152 
  4.4488  -0.9595  -1.5440  -4.3382  -0.3588  -1.6041  -2.0544   2.3270 
     153      154      155      156      157      158      159      160 
  2.5900   0.7945   1.0049   0.2851  -3.3066   2.2779   6.0720   6.0927 
     161      162      163      164      165      166      167      168 
  6.3380   5.7883   3.4069   5.1439   9.9394  -1.2710   0.4488   1.0405 
     169      170      171      172      173      174      175      176 
  2.4560   4.2064  -0.0102   1.8590   0.7290   0.5146  -1.8610  -4.4591 
     177      178      179      180      181      182      183      184 
 -1.3189   0.5458   1.1483  -0.4725   0.7441  -2.1251  -3.9951  -1.7808 
     185      186      187      188      189      190      191      192 
 -0.4051   1.1930  -1.9472  -3.8119  -1.4144  -0.7936  -2.0102  -1.1410 
     193      194      195      196      197      198      199      200 
 -3.2710   3.5146  -5.8610  -2.4591  -0.4177  -3.7259   3.0063   3.7290 
     201      202      203      204      205      206      207      208 
  1.3930  -2.0471   0.3708  -3.3821  -0.3224  -1.4542   0.2314  -4.2441 
     209      210      211      212      213      214      215      216 
 -2.8484   1.4598  -0.2724  -0.9951   1.3409   6.7809  10.3631   6.1159 
     217      218      219      220      221      222      223      224 
  6.0562   9.1881   5.5025   5.9780   4.5823   7.2741   8.0063   7.7290 
     225      226      227      228      229      230      231      232 
  1.3930  -3.0471  -1.6292  -4.0220   0.8054  -0.2392  -1.2710  -3.4068 
     233      234      235      236      237      238      239      240 
  2.2493   0.6179  -1.3452   0.3554   4.7559   3.9285  -0.0269   6.0049 
     241      242      243      244      245      246      247      248 
  1.1406   1.4846   0.1159   2.0791  -0.6215   1.9780   1.8054  -1.2392 
     249      250      251      252      253      254      255      256 
 -1.2710  -3.4067  -5.7507  -1.3821  -2.5931   3.1439   2.9394   0.7290 
     257      258      259      260      261      262      263      264 
  0.4488  -3.9595   1.4560   2.6618   1.6412   6.3959   4.9456   0.3270 
     265      266      267      268      269      270      271      272 
 -4.4100   1.7945   7.0049   8.2851   8.6934   6.2779   6.0720       NA 
     273      274      275      276      277      278      279      280 
  7.3380   7.7883   3.4069   4.1439   4.9394   5.7290   3.4488   2.0405 
     281      282      283      284      285      286      287      288 
  1.4560  -4.7936  -5.0102  -4.1410  -3.2710  -2.4854  -3.8610  -2.4591 
     289      290      291      292      293      294      295      296 
 -1.3189   0.5458   0.1483   3.5275   1.7441  -4.1251  -4.9951  -5.7808 
     297      298      299      300      301      302      303      304 
 -5.4051   1.1930  -2.9472  -4.8119  -2.4144  -1.7936  -4.0102  -6.1410 
     305      306      307      308 
 -2.2710  -3.4854  -4.8610  -4.4591 
attr(,"std")
  [1]   NA 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
 [16] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
 [31] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
 [46] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
 [61] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
 [76] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
 [91] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[106] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[121] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[136] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[151] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[166] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[181] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[196] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[211] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[226] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[241] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[256] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[271] 4.58   NA 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[286] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
[301] 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58
attr(,"label")
[1] "Residuals"
> summary(fm1)
Generalized least squares fit by REML
  Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time) 
  Data: Ovary 
   AIC  BIC logLik
  1560 1579   -775

Correlation Structure: AR(1)
 Formula: ~1 | Mare 
 Parameter estimate(s):
 Phi 
0.75 

Coefficients:
                   Value Std.Error t-value p-value
(Intercept)        12.13     0.657   18.46   0.000
sin(2 * pi * Time) -2.68     0.644   -4.16   0.000
cos(2 * pi * Time) -0.86     0.690   -1.25   0.213

 Correlation: 
                   (Intr) s(*p*T
sin(2 * pi * Time) -0.007       
cos(2 * pi * Time) -0.295  0.003

Standardized residuals:
    Min      Q1     Med      Q3     Max 
-2.3897 -0.7565 -0.0132  0.6396  3.1830 

Residual standard error: 4.58 
Degrees of freedom: 306 total; 303 residual
> 
> Orthodont[100:102, 2] <- NA
> fm2 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1,
+            na.action=na.exclude)
> fitted(fm2, 0:1)
    fixed Subject
1    23.0    25.4
2    24.3    26.7
3    25.6    28.0
4    27.0    29.4
5    23.0    21.6
6    24.3    22.9
7    25.6    24.3
8    27.0    25.6
9    23.0    22.3
10   24.3    23.7
11   25.6    25.0
12   27.0    26.4
13   23.0    24.4
14   24.3    25.7
15   25.6    27.1
16   27.0    28.4
17   23.0    21.3
18   24.3    22.6
19   25.6    23.9
20   27.0    25.3
21   23.0    24.2
22   24.3    25.5
23   25.6    26.9
24   27.0    28.2
25   23.0    21.9
26   24.3    23.2
27   25.6    24.6
28   27.0    25.9
29   23.0    22.0
30   24.3    23.4
31   25.6    24.7
32   27.0    26.0
33   23.0    23.1
34   24.3    24.4
35   25.6    25.8
36   27.0    27.1
37   23.0    26.9
38   24.3    28.2
39   25.6    29.5
40   27.0    30.9
41   23.0    21.8
42   24.3    23.1
43   25.6    24.5
44   27.0    25.8
45   23.0    22.3
46   24.3    23.7
47   25.6    25.0
48   27.0    26.4
49   23.0    22.3
50   24.3    23.7
51   25.6    25.0
52   27.0    26.4
53   23.0    22.9
54   24.3    24.2
55   25.6    25.6
56   27.0    26.9
57   23.0    23.7
58   24.3    25.1
59   25.6    26.4
60   27.0    27.8
61   23.0    21.3
62   24.3    22.6
63   25.6    23.9
64   27.0    25.3
65   20.7    19.5
66   22.0    20.9
67   23.4    22.2
68   24.7    23.6
69   20.7    20.9
70   22.0    22.3
71   23.4    23.6
72   24.7    25.0
73   20.7    21.6
74   22.0    22.9
75   23.4    24.3
76   24.7    25.6
77   20.7    22.6
78   22.0    23.9
79   23.4    25.2
80   24.7    26.6
81   20.7    20.6
82   22.0    22.0
83   23.4    23.3
84   24.7    24.6
85   20.7    19.3
86   22.0    20.7
87   23.4    22.0
88   24.7    23.4
89   20.7    20.9
90   22.0    22.3
91   23.4    23.6
92   24.7    25.0
93   20.7    21.3
94   22.0    22.6
95   23.4    24.0
96   24.7    25.3
97   20.7    19.8
98   22.0    21.2
99   23.4    22.5
100    NA      NA
101    NA      NA
102    NA      NA
103  23.4    19.7
104  24.7    21.1
105  20.7    23.9
106  22.0    25.2
107  23.4    26.5
108  24.7    27.9
> fitted(fm2)
 M01  M01  M01  M01  M02  M02  M02  M02  M03  M03  M03  M03  M04  M04  M04  M04 
25.4 26.7 28.0 29.4 21.6 22.9 24.3 25.6 22.3 23.7 25.0 26.4 24.4 25.7 27.1 28.4 
 M05  M05  M05  M05  M06  M06  M06  M06  M07  M07  M07  M07  M08  M08  M08  M08 
21.3 22.6 23.9 25.3 24.2 25.5 26.9 28.2 21.9 23.2 24.6 25.9 22.0 23.4 24.7 26.0 
 M09  M09  M09  M09  M10  M10  M10  M10  M11  M11  M11  M11  M12  M12  M12  M12 
23.1 24.4 25.8 27.1 26.9 28.2 29.5 30.9 21.8 23.1 24.5 25.8 22.3 23.7 25.0 26.4 
 M13  M13  M13  M13  M14  M14  M14  M14  M15  M15  M15  M15  M16  M16  M16  M16 
22.3 23.7 25.0 26.4 22.9 24.2 25.6 26.9 23.7 25.1 26.4 27.8 21.3 22.6 23.9 25.3 
 F01  F01  F01  F01  F02  F02  F02  F02  F03  F03  F03  F03  F04  F04  F04  F04 
19.5 20.9 22.2 23.6 20.9 22.3 23.6 25.0 21.6 22.9 24.3 25.6 22.6 23.9 25.2 26.6 
 F05  F05  F05  F05  F06  F06  F06  F06  F07  F07  F07  F07  F08  F08  F08  F08 
20.6 22.0 23.3 24.6 19.3 20.7 22.0 23.4 20.9 22.3 23.6 25.0 21.3 22.6 24.0 25.3 
 F09  F09  F09 <NA> <NA> <NA>  F10  F10  F11  F11  F11  F11 
19.8 21.2 22.5   NA   NA   NA 19.7 21.1 23.9 25.2 26.5 27.9 
attr(,"label")
[1] "Fitted values (mm)"
> residuals(fm2, 0:1)
      fixed  Subject
1    3.0453  0.64827
2    0.7026 -1.69443
3    3.3599  0.96286
4    4.0172  1.62016
5   -1.4547 -0.08111
6   -1.7974 -0.42382
7   -2.6401 -1.26652
8   -0.4828  0.89078
9    0.0453  0.66476
10  -1.7974 -1.17794
11  -1.6401 -1.02064
12   0.5172  1.13665
13   2.5453  1.11786
14   3.2026  1.77515
15   0.8599 -0.56755
16   0.0172 -1.41025
17  -2.9547 -1.25792
18  -0.7974  0.89938
19  -3.1401 -1.44332
20  -0.9828  0.71397
21   1.5453  0.33332
22   1.2026 -0.00938
23   1.3599  0.14791
24   1.5172  0.30521
25  -0.9547  0.09569
26  -2.2974 -1.24701
27  -1.1401 -0.08972
28  -0.4828  0.56758
29   1.0453  1.98796
30  -2.7974 -1.85474
31  -1.1401 -0.19745
32  -1.4828 -0.54015
33   0.0453 -0.08936
34  -3.7974 -3.93206
35   5.3599  5.22523
36  -0.9828 -1.11747
37   4.5453  0.64002
38   3.7026 -0.20268
39   5.3599  1.45461
40   4.5172  0.61191
41   0.0453  1.20342
42  -1.2974 -0.13928
43  -2.1401 -0.98198
44  -1.9828 -0.82469
45  -1.4547 -0.83524
46  -0.7974 -0.17794
47  -1.6401 -1.02064
48   1.0172  1.63665
49  -5.9547 -5.33524
50   0.2026  0.82206
51   0.3599  0.97936
52   2.5172  3.13665
53  -0.4547 -0.37390
54   1.2026  1.28340
55  -0.1401 -0.05930
56  -0.9828 -0.90201
57   0.0453 -0.73575
58   0.2026 -0.57846
59   0.3599 -0.42116
60   3.0172  2.23614
61  -0.9547  0.74208
62  -2.7974 -1.10062
63  -2.1401 -0.44332
64  -1.9828 -0.28603
65   0.3135  1.45594
66  -2.0292 -0.88676
67  -1.8719 -0.72947
68  -1.7146 -0.57217
69   0.3135  0.05543
70  -0.5292 -0.78728
71   0.6281  0.37002
72   0.7854  0.52732
73  -0.1865 -1.09097
74   1.9708  1.06633
75   1.1281  0.22363
76   1.2854  0.38092
77   2.8135  0.93945
78   2.4708  0.59674
79   1.6281 -0.24596
80   1.7854 -0.08866
81   0.8135  0.87862
82   0.9708  1.03592
83  -0.8719 -0.80678
84  -1.2146 -1.14949
85  -0.6865  0.67141
86  -1.0292  0.32870
87  -2.3719 -1.01400
88  -2.2146 -0.85670
89   0.8135  0.55543
90   0.4708  0.21272
91  -0.3719 -0.62998
92   0.2854  0.02732
93   2.3135  1.73223
94   0.9708  0.38953
95   0.1281 -0.45318
96  -0.7146 -1.29588
97  -0.6865  0.16148
98  -1.0292 -0.18122
99  -1.3719 -0.52392
100      NA       NA
101      NA       NA
102      NA       NA
103 -4.3719 -0.74222
104 -5.2146 -1.58492
105  3.8135  0.64666
106  2.9708 -0.19604
107  4.6281  1.46126
108  3.2854  0.11855
> round(residuals(fm2), 2)
  M01   M01   M01   M01   M02   M02   M02   M02   M03   M03   M03   M03   M04 
 0.65 -1.69  0.96  1.62 -0.08 -0.42 -1.27  0.89  0.66 -1.18 -1.02  1.14  1.12 
  M04   M04   M04   M05   M05   M05   M05   M06   M06   M06   M06   M07   M07 
 1.78 -0.57 -1.41 -1.26  0.90 -1.44  0.71  0.33 -0.01  0.15  0.31  0.10 -1.25 
  M07   M07   M08   M08   M08   M08   M09   M09   M09   M09   M10   M10   M10 
-0.09  0.57  1.99 -1.85 -0.20 -0.54 -0.09 -3.93  5.23 -1.12  0.64 -0.20  1.45 
  M10   M11   M11   M11   M11   M12   M12   M12   M12   M13   M13   M13   M13 
 0.61  1.20 -0.14 -0.98 -0.82 -0.84 -0.18 -1.02  1.64 -5.34  0.82  0.98  3.14 
  M14   M14   M14   M14   M15   M15   M15   M15   M16   M16   M16   M16   F01 
-0.37  1.28 -0.06 -0.90 -0.74 -0.58 -0.42  2.24  0.74 -1.10 -0.44 -0.29  1.46 
  F01   F01   F01   F02   F02   F02   F02   F03   F03   F03   F03   F04   F04 
-0.89 -0.73 -0.57  0.06 -0.79  0.37  0.53 -1.09  1.07  0.22  0.38  0.94  0.60 
  F04   F04   F05   F05   F05   F05   F06   F06   F06   F06   F07   F07   F07 
-0.25 -0.09  0.88  1.04 -0.81 -1.15  0.67  0.33 -1.01 -0.86  0.56  0.21 -0.63 
  F07   F08   F08   F08   F08   F09   F09   F09  <NA>  <NA>  <NA>   F10   F10 
 0.03  1.73  0.39 -0.45 -1.30  0.16 -0.18 -0.52    NA    NA    NA -0.74 -1.58 
  F11   F11   F11   F11 
 0.65 -0.20  1.46  0.12 
attr(,"label")
[1] "Residuals (mm)"
> summary(fm2)
Linear mixed-effects model fit by REML
 Data: Orthodont 
  AIC BIC logLik
  437 450   -213

Random effects:
 Formula: ~1 | Subject
        (Intercept) Residual
StdDev:         1.8     1.44

Fixed effects: distance ~ age + Sex 
            Value Std.Error DF t-value p-value
(Intercept) 17.58     0.850 77   20.68  0.0000
age          0.67     0.064 77   10.56  0.0000
SexFemale   -2.27     0.762 25   -2.98  0.0064
 Correlation: 
          (Intr) age   
age       -0.822       
SexFemale -0.357 -0.006

Standardized Within-Group Residuals:
    Min      Q1     Med      Q3     Max 
-3.7079 -0.5471 -0.0564  0.4666  3.6314 

Number of Observations: 105
Number of Groups: 27 
> 
> Soybean[1:5, "Time"] <- NA
> fm3 <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,
+             weights = varPower(), na.action=na.exclude)
> fitted(fm3)
     1      2      3      4      5      6      7      8      9     10     11 
    NA     NA     NA     NA     NA  7.047 10.958 14.082 15.894 16.756  0.120 
    12     13     14     15     16     17     18     19     20     21     22 
 0.298  0.726  1.708  3.724  7.047 10.958 15.894 16.756  0.120  0.298  0.726 
    23     24     25     26     27     28     29     30     31     32     33 
 1.708  3.724  7.047 10.958 14.082 15.894 16.756  0.120  0.298  0.726  1.708 
    34     35     36     37     38     39     40     41     42     43     44 
 3.724  7.047 10.958 14.082 15.894 16.756  0.120  0.298  0.726  1.708  3.724 
    45     46     47     48     49     50     51     52     53     54     55 
 7.047 10.958 15.894  0.120  0.298  0.726  1.708  3.724  7.047 10.958 14.082 
    56     57     58     59     60     61     62     63     64     65     66 
15.894 16.756  0.120  0.298  0.726  1.708  3.724  7.047 10.958 15.894 16.756 
    67     68     69     70     71     72     73     74     75     76     77 
 0.120  0.298  0.726  1.708  3.724  7.047 10.958 14.082 15.894 16.756  0.120 
    78     79     80     81     82     83     84     85     86     87     88 
 0.298  0.726  1.708  3.724  7.047 10.958 14.082 15.894 16.756  0.120  0.298 
    89     90     91     92     93     94     95     96     97     98     99 
 0.726  1.708  3.724  7.047 10.958 14.082 15.894 16.756  0.120  0.298  0.726 
   100    101    102    103    104    105    106    107    108    109    110 
 1.708  3.724  7.047 10.958 14.082 15.894 16.756  0.120  0.298  0.726  1.708 
   111    112    113    114    115    116    117    118    119    120    121 
 3.724  7.047 10.958 14.082 15.894 16.756  0.120  0.298  0.726  1.708  3.724 
   122    123    124    125    126    127    128    129    130    131    132 
 7.047 10.958 14.082 15.894 16.756  0.120  0.298  0.726  1.708  3.724  7.047 
   133    134    135    136    137    138    139    140    141    142    143 
10.958 14.082 15.894 16.756  0.120  0.298  0.726  1.708  3.724  7.047 10.958 
   144    145    146    147    148    149    150    151    152    153    154 
14.082 15.894 16.756  0.120  0.298  0.726  1.708  3.724  7.047 10.958 14.082 
   155    156    157    158    159    160    161    162    163    164    165 
15.894 16.756  0.120  0.262  0.640  1.517  3.355 10.419 15.706 17.127  0.120 
   166    167    168    169    170    171    172    173    174    175    176 
 0.262  0.640  1.517  3.355 10.419 15.706 17.127  0.120  0.262  0.640  1.517 
   177    178    179    180    181    182    183    184    185    186    187 
 3.355 10.419 15.706 17.127  0.120  0.262  0.640  1.517  3.355 10.419 15.706 
   188    189    190    191    192    193    194    195    196    197    198 
17.127  0.120  0.262  0.640  1.517  3.355 10.419 15.706 17.127  0.120  0.262 
   199    200    201    202    203    204    205    206    207    208    209 
 0.640  1.517  3.355 10.419 15.706 17.127  0.120  0.262  0.640  1.517  3.355 
   210    211    212    213    214    215    216    217    218    219    220 
10.419 15.706 17.127  0.120  0.262  0.640  1.517  3.355 10.419 15.706 17.127 
   221    222    223    224    225    226    227    228    229    230    231 
 0.120  0.262  0.640  1.517  3.355 10.419 15.706 17.127  0.120  0.262  0.640 
   232    233    234    235    236    237    238    239    240    241    242 
 1.517  3.355 10.419 15.706 17.127  0.120  0.262  0.640  1.517  3.355 10.419 
   243    244    245    246    247    248    249    250    251    252    253 
15.706 17.127  0.120  0.262  0.640  1.517  3.355 10.419 15.706 17.127  0.120 
   254    255    256    257    258    259    260    261    262    263    264 
 0.262  0.640  1.517  3.355 10.419 15.706 17.127  0.120  0.262  0.640  1.517 
   265    266    267    268    269    270    271    272    273    274    275 
 3.355 10.419 15.706 17.127  0.120  0.262  0.640  1.517  3.355 10.419 15.706 
   276    277    278    279    280    281    282    283    284    285    286 
17.127  0.120  0.262  0.640  1.517  3.355 10.419 15.706 17.127  0.137  0.385 
   287    288    289    290    291    292    293    294    295    296    297 
 0.932  2.157  4.121  8.166 14.418 16.897  0.137  0.385  0.932  2.157  4.121 
   298    299    300    301    302    303    304    305    306    307    308 
 8.166 14.418 16.897  0.137  0.385  0.932  2.157  4.121  8.166 14.418 16.897 
   309    310    311    312    313    314    315    316    317    318    319 
 0.137  0.385  0.932  2.157  4.121  8.166 14.418 16.897  0.137  0.385  0.932 
   320    321    322    323    324    325    326    327    328    329    330 
 2.157  4.121  8.166 14.418 16.897  0.137  0.385  0.932  2.157  4.121  8.166 
   331    332    333    334    335    336    337    338    339    340    341 
14.418 16.897  0.137  0.385  0.932  2.157  4.121  8.166 14.418 16.897  0.137 
   342    343    344    345    346    347    348    349    350    351    352 
 0.385  0.932  2.157  4.121  8.166 14.418 16.897  0.137  0.385  0.932  2.157 
   353    354    355    356    357    358    359    360    361    362    363 
 4.121  8.166 14.418 16.897  0.137  0.385  0.932  2.157  4.121  8.166 14.418 
   364    365    366    367    368    369    370    371    372    373    374 
16.897  0.137  0.385  0.932  2.157  4.121  8.166 14.418 16.897  0.137  0.385 
   375    376    377    378    379    380    381    382    383    384    385 
 0.932  2.157  4.121  8.166 14.418 16.897  0.137  0.385  0.932  2.157  4.121 
   386    387    388    389    390    391    392    393    394    395    396 
 8.166 14.418 16.897  0.137  0.385  0.932  2.157  4.121  8.166 14.418 16.897 
   397    398    399    400    401    402    403    404    405    406    407 
 0.137  0.385  0.932  2.157  4.121  8.166 14.418 16.897  0.137  0.385  0.932 
   408    409    410    411    412 
 2.157  4.121  8.166 14.418 16.897 
attr(,"label")
[1] "Fitted values (g)"
> residuals(fm3)
       1        2        3        4        5        6        7        8 
      NA       NA       NA       NA       NA -0.81724 -2.24772 -0.73203 
       9       10       11       12       13       14       15       16 
 0.44774  0.99485 -0.01627 -0.02870  0.05209  0.41153 -0.79366 -1.75724 
      17       18       19       20       21       22       23       24 
-1.45772  1.07274  0.99072 -0.01227 -0.00670 -0.05891  0.34153  0.08634 
      25       26       27       28       29       30       31       32 
-0.91724 -0.67772  3.99797  4.28854  5.05482 -0.01527  0.00130  0.11809 
      33       34       35       36       37       38       39       40 
-0.38847 -1.48366 -2.36724 -2.13772  1.00797 -1.23396 -2.75138 -0.01927 
      41       42       43       44       45       46       47       48 
-0.02470  0.12209  0.24153  1.04634 -1.03724 -1.04772  3.36834 -0.01427 
      49       50       51       52       53       54       55       56 
 0.03930 -0.02691 -0.17847  0.14634 -1.44724 -1.52772 -0.35203  1.48684 
      57       58       59       60       61       62       63       64 
 3.17632 -0.01827 -0.02270  0.04109 -0.25847  0.22634 -2.10724 -1.31772 
      65       66       67       68       69       70       71       72 
 1.98604  0.96822 -0.01727 -0.02470  0.01609 -0.29847 -0.71366 -1.78724 
      73       74       75       76       77       78       79       80 
-1.14772 -1.23203  2.32021  2.92402  0.01073  0.04030 -0.02491 -0.04847 
      81       82       83       84       85       86       87       88 
 0.52634  2.19276  1.19228  2.69797  0.03104  0.51632  0.00773  0.10630 
      89       90       91       92       93       94       95       96 
 0.17109  0.07153  0.18634  0.35276 -0.88772  4.77797  1.11774 10.61402 
      97       98       99      100      101      102      103      104 
 0.01073  0.08130  0.40009  0.73153  0.16634 -0.13724  1.53228  1.58797 
     105      106      107      108      109      110      111      112 
 7.86934  4.73482  0.03373  0.05930  0.45509  0.12153  0.98634  3.66276 
     113      114      115      116      117      118      119      120 
-1.04772  1.42797 -0.93606  5.04402  0.01873  0.03030  0.20609  0.28153 
     121      122      123      124      125      126      127      128 
-0.26366 -0.02724  0.83228  1.74797  0.02687  0.68572  0.01873  0.09130 
     129      130      131      132      133      134      135      136 
 0.36809  0.42153  0.31634  0.57276  1.52228  3.84797 -1.47226 13.51572 
     137      138      139      140      141      142      143      144 
 0.02473  0.06830  0.07309 -0.09847 -0.21366 -0.25724 -1.00772  0.45797 
     145      146      147      148      149      150      151      152 
 3.38604  5.81675  0.00973  0.05730  0.36409  0.57153  0.21634 -2.08724 
     153      154      155      156      157      158      159      160 
-0.03772 -0.06203  2.10024  5.61482 -0.07327 -0.12571 -0.36726 -0.53373 
     161      162      163      164      165      166      167      168 
-1.55813 -6.30167 -4.66844 -6.72407 -0.08527 -0.14971 -0.37209 -0.46373 
     169      170      171      172      173      174      175      176 
-1.63980 -3.69048 -5.39225 -6.03907 -0.07627 -0.11571 -0.27959 -0.74206 
     177      178      179      180      181      182      183      184 
-1.71313 -6.67048 -4.83058 -1.09990 -0.07127 -0.16471 -0.41259 -0.68373 
     185      186      187      188      189      190      191      192 
-2.00080 -4.43048 -5.12058 -6.21597 -0.08127 -0.14071 -0.36842 -0.85873 
     193      194      195      196      197      198      199      200 
-0.96480 -4.93548 -5.76891 -8.23907 -0.09127 -0.16971 -0.38909 -0.97539 
     201      202      203      204      205      206      207      208 
-2.29313 -5.58881 -9.43391 -8.54407 -0.07927 -0.11671 -0.23476 -0.75706 
     209      210      211      212      213      214      215      216 
-1.86147 -4.17048 -4.59388 -8.24740 -0.08227 -0.13471 -0.29992 -0.52306 
     217      218      219      220      221      222      223      224 
-1.07313 -1.91281 -6.73225 -5.49540 -0.05027 -0.05371 -0.03926  0.38461 
     225      226      227      228      229      230      231      232 
-0.38980 -2.27548 -0.00558  2.76090 -0.05227 -0.00971 -0.05959  0.49694 
     233      234      235      236      237      238      239      240 
-0.68147 -1.61881 -1.22058  5.51590 -0.04327 -0.03771 -0.29876  0.22294 
     241      242      243      244      245      246      247      248 
 1.16920  1.23789  4.61112  4.27460 -0.02127 -0.06371 -0.14892 -0.31206 
     249      250      251      252      253      254      255      256 
-0.55480 -3.05548 -0.56391  0.05927 -0.05227 -0.02971 -0.20409 -0.07373 
     257      258      259      260      261      262      263      264 
-0.09480 -2.21048  3.70112 -1.46573 -0.05727 -0.05271  0.10074 -0.24873 
     265      266      267      268      269      270      271      272 
 0.53520 -1.32681 -1.21558  1.96760  0.01273  0.04129  0.47691  0.66294 
     273      274      275      276      277      278      279      280 
 0.18187  2.74119  0.08442 -2.35240 -0.03927 -0.00671  0.12474 -0.42373 
     281      282      283      284      285      286      287      288 
-0.30313 -2.31381  8.71842  1.79090 -0.02776 -0.00104  0.23005  0.18344 
     289      290      291      292      293      294      295      296 
-1.25117  1.37221 -1.73490  1.73667 -0.04196 -0.04654 -0.17329  0.36344 
     297      298      299      300      301      302      303      304 
-1.60284 -3.04945 -5.84320 -2.72333 -0.04896  0.22830  0.38338  0.86511 
     305      306      307      308      309      310      311      312 
 1.72883 -0.74945 -3.08650 -0.01333 -0.04824  0.21180  0.14338  0.91844 
     313      314      315      316      317      318      319      320 
-0.16284 -2.13279 -3.98153  0.90664 -0.03566 -0.00954  0.99005  0.05011 
     321      322      323      324      325      326      327      328 
 0.64383  0.97388  1.42180  1.21164 -0.02720  0.09846  0.37505  1.79844 
     329      330      331      332      333      334      335      336 
 0.18383 -0.13445  1.66513  2.67664 -0.03402  0.02963  0.73171 -0.76656 
     337      338      339      340      341      342      343      344 
-1.11950 -1.32112  1.79180  2.17664 -0.06027 -0.01304 -0.18662  0.09011 
     345      346      347      348      349      350      351      352 
 0.37383 -2.49112  1.72680  2.03504  0.01178  0.30213  0.64005  1.65677 
     353      354      355      356      357      358      359      360 
 0.69050  3.48721  2.95850  1.00004  0.01680  0.20930  0.26838  0.98844 
     361      362      363      364      365      366      367      368 
-0.31784 -0.74945 -0.83820  3.96334 -0.01280  0.36546  0.52671  3.60177 
     369      370      371      372      373      374      375      376 
 1.87550  0.80555  2.65350  0.92004  0.04150  0.49596  0.45005  1.47178 
     377      378      379      380      381      382      383      384 
 1.07217 -2.97612  1.36180  4.64501  0.00218  0.07096  0.65171  1.89844 
     385      386      387      388      389      390      391      392 
 0.38883 -0.00445  4.29680  1.05834  0.02574  0.38880  0.04338  1.35511 
     393      394      395      396      397      398      399      400 
 0.38883 -0.38279  3.70013 -0.94999 -0.02653  0.07113  0.43838 -0.01156 
     401      402      403      404      405      406      407      408 
 1.70883  0.63721 -2.18320  0.88834  0.00904  0.17880  0.54671  0.44511 
     409      410      411      412 
 2.22216 -2.03445  1.99350  0.05004 
attr(,"std")
  [1]     NA     NA     NA     NA     NA 2.0514 3.0228 3.7679 4.1905 4.3895
 [11] 0.0575 0.1274 0.2786 0.5909 1.1714 2.0514 3.0228 4.1905 4.3895 0.0575
 [21] 0.1274 0.2786 0.5909 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575
 [31] 0.1274 0.2786 0.5909 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575
 [41] 0.1274 0.2786 0.5909 1.1714 2.0514 3.0228 4.1905 0.0575 0.1274 0.2786
 [51] 0.5909 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786
 [61] 0.5909 1.1714 2.0514 3.0228 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
 [71] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
 [81] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
 [91] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
[101] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
[111] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
[121] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
[131] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
[141] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1274 0.2786 0.5909
[151] 1.1714 2.0514 3.0228 3.7679 4.1905 4.3895 0.0575 0.1137 0.2495 0.5324
[161] 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919
[171] 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749
[181] 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137
[191] 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324
[201] 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919
[211] 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749
[221] 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137
[231] 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324
[241] 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919
[251] 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749
[261] 0.0575 0.1137 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137
[271] 0.2495 0.5324 1.0689 2.8919 4.1469 4.4749 0.0575 0.1137 0.2495 0.5324
[281] 1.0689 2.8919 4.1469 4.4749 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348
[291] 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219
[301] 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596
[311] 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251
[321] 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348
[331] 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219
[341] 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596
[351] 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251
[361] 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348
[371] 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219
[381] 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596
[391] 0.3469 0.7251 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251
[401] 1.2806 2.3348 3.8468 4.4219 0.0644 0.1596 0.3469 0.7251 1.2806 2.3348
[411] 3.8468 4.4219
attr(,"label")
[1] "Residuals (g)"
> summary(fm3)
Generalized nonlinear least squares fit
  Model: weight ~ SSlogis(Time, Asym, xmid, scal) 
  Data: Soybean 
  AIC  BIC logLik
  987 1007   -489

Variance function:
 Structure: Power of variance covariate
 Formula: ~fitted(.) 
 Parameter estimates:
power 
0.878 

Coefficients:
     Value Std.Error t-value p-value
Asym  17.4     0.525    33.1       0
xmid  51.9     0.598    86.8       0
scal   7.6     0.142    54.0       0

 Correlation: 
     Asym  xmid 
xmid 0.788      
scal 0.488 0.842

Standardized residuals:
    Min      Q1     Med      Q3     Max 
-2.3066 -0.6545 -0.0019  0.5012  4.9676 

Residual standard error: 0.369 
Degrees of freedom: 407 total; 404 residual
> 
> options(op)# revert when this file is source()d
> 
> proc.time()
   user  system elapsed 
  0.461   0.085   0.549