"gelman.diag" <- function (x, confidence = 0.95, transform = FALSE, autoburnin=TRUE, multivariate=TRUE) ## Gelman and Rubin's diagnostic ## Gelman, A. and Rubin, D (1992). Inference from iterative simulation ## using multiple sequences. Statistical Science, 7, 457-551. ## ## Correction and Multivariate generalization: ## Brooks, S.P. and Gelman, A. (1997) General methods for monitoring ## convergence of iterative simulations. Journal of Computational and ## Graphical Statistics, 7, 434-455. { x <- as.mcmc.list(x) if (nchain(x) < 2) stop("You need at least two chains") ## RGA added an autoburnin parameter here, because if I have already ## trimmed burn in, I don't want to do it again. if (autoburnin && start(x) < end(x)/2 ) x <- window(x, start = end(x)/2 + 1) Niter <- niter(x) Nchain <- nchain(x) Nvar <- nvar(x) xnames <- varnames(x) if(transform) x <- gelman.transform(x) ## ## Estimate mean within-chain variance (W) and between-chain variance ## (B/Niter), and calculate sampling variances and covariance of the ## estimates (varW, varB, covWB) ## ## Multivariate (upper case) x <- lapply(x, as.matrix) S2 <- array(sapply(x, var, simplify=TRUE), dim=c(Nvar,Nvar,Nchain)) W <- apply(S2, c(1,2), mean) xbar <- matrix(sapply(x, apply, 2, mean, simplify=TRUE), nrow=Nvar, ncol=Nchain) B <- Niter * var(t(xbar)) if(Nvar > 1 && multivariate) { ## We want the maximal eigenvalue of the square matrix X that ## solves WX = B. It is numerically easier to work with a ## symmetric matrix that has the same eigenvalues as X. if (is.R()) { CW <- chol(W) emax <- eigen(backsolve(CW, t(backsolve(CW, B, transpose=TRUE)), transpose=TRUE), symmetric=TRUE, only.values=TRUE)$values[1] } else { emax <- eigen(qr.solve(W,B), symmetric=FALSE, only.values=TRUE)$values } mpsrf <- sqrt( (1 - 1/Niter) + (1 + 1/Nvar) * emax/Niter ) } else mpsrf <- NULL ## Univariate (lower case) w <- diag(W) b <- diag(B) s2 <- matrix(apply(S2, 3, diag), nrow=Nvar, ncol=Nchain) muhat <- apply(xbar,1,mean) var.w <- apply(s2, 1, var)/Nchain var.b <- (2 * b^2)/(Nchain - 1) cov.wb <- (Niter/Nchain) * diag(var(t(s2), t(xbar^2)) - 2 * muhat * var(t(s2), t(xbar))) ## ## Posterior interval combines all uncertainties in a t interval with ## center muhat, scale sqrt(V), and df.V degrees of freedom. ## V <- (Niter - 1) * w / Niter + (1 + 1/Nchain) * b/ Niter var.V <- ((Niter - 1)^2 * var.w + (1 + 1/Nchain)^2 * var.b + 2 * (Niter - 1) * (1 + 1/Nchain) * cov.wb)/Niter^2 df.V <- (2 * V^2)/var.V ## ## Potential scale reduction factor (that would be achieved by ## continuing simulations forever) is estimated by ## R = sqrt(V/W) * df.adj ## where df.adj is a degrees of freedom adjustment for the width ## of the t-interval. ## ## To calculate upper confidence interval we divide R2 = R^2 into two ## parts, fixed and random. The upper limit of the random part is ## calculated assuming that B/W has an F distribution. ## df.adj <- (df.V + 3)/(df.V + 1) B.df <- Nchain - 1 W.df <- (2 * w^2)/var.w R2.fixed <- (Niter - 1)/Niter R2.random <- (1 + 1/Nchain) * (1/Niter) * (b/w) R2.estimate <- R2.fixed + R2.random R2.upper <- R2.fixed + qf((1 + confidence)/2, B.df, W.df) * R2.random psrf <- cbind(sqrt(df.adj * R2.estimate), sqrt(df.adj * R2.upper)) dimnames(psrf) <- list(xnames, c("Point est.", "Upper C.I.")) out <- list(psrf = psrf, mpsrf=mpsrf) class(out) <- "gelman.diag" out } "gelman.transform" <- function(x) ## Gelman and Rubin diagnostic assumes a normal distribution. To ## improve the normal approximation, variables on [0, Inf) are log ## transformed, and variables on [0,1] are logit-transformed. { if (!is.R()) { # in S-PLUS this function generates a superfluous warning, # so turn off all warnings during the function. oldWarn <- getOption("warn") options(warn=-1) on.exit(options (warn=oldWarn)) } if (nvar(x) == 1) { z <- data.frame(lapply(x, unclass)) if (min(z) > 0) { y <- if(max(z) < 1) log(z/(1-z)) else log(z) for (j in 1:nchain(x)) x[[j]] <- y[,j] } } else for (i in 1:nvar(x)) { z <- data.frame(lapply(x[, i], unclass)) if (min(z) > 0) { y <- if (max(z) < 1) log(z/(1 - z)) else log(z) for (j in 1:nchain(x)) x[[j]][, i] <- y[, j] } } return(x) } "gelman.mv.diag" <- function (x, confidence = 0.95, transform = FALSE) { s2 <- sapply(x, var, simplify=TRUE) W <- matrix(apply(s2, 1, mean), nvar(x), nvar(x)) xbar <- sapply(x, apply, 2, mean, simplify=TRUE) B <- niter(x) * var(t(xbar)) emax <- eigen(qr.solve(W,B), symmetric=FALSE, only.values=TRUE)$values[1] mpsrf <- sqrt( (1 - 1/niter(x)) + (1 + 1/nvar(x)) * emax ) return(mpsrf) } "print.gelman.diag" <- function (x, digits = 3, ...) { cat("Potential scale reduction factors:\n\n") print.default(x$psrf, digits = digits, ...) if(!is.null(x$mpsrf)) { cat("\nMultivariate psrf\n\n") cat(format(x$mpsrf,digits = digits)) } cat("\n") } "gelman.plot" <- function (x, bin.width = 10, max.bins = 50, confidence = 0.95, transform = FALSE, autoburnin = TRUE, auto.layout = TRUE, ask, col = 1:2, lty = 1:2, xlab = "last iteration in chain", ylab = "shrink factor", type = "l", ...) { if (missing(ask)) { ask <- if (is.R()) { dev.interactive() } else { interactive() } } x <- as.mcmc.list(x) oldpar <- NULL on.exit(par(oldpar)) if (auto.layout) oldpar <- par(mfrow = set.mfrow(Nchains = nchain(x), Nparms = nvar(x))) y <- gelman.preplot(x, bin.width = bin.width, max.bins = max.bins, confidence = confidence, transform = transform, autoburnin = autoburnin) all.na <- apply(is.na(y$shrink[, , 1, drop = FALSE]), 2, all) if (!any(all.na)) for (j in 1:nvar(x)) { matplot(y$last.iter, y$shrink[, j, ], col = col, lty = lty, xlab = xlab, ylab = ylab, type = type, ...) abline(h = 1) ymax <- max(c(1, y$shrink[, j, ]), na.rm = TRUE) leg <- dimnames(y$shrink)[[3]] xmax <- max(y$last.iter) legend(xmax, ymax, legend = leg, lty = lty, bty = "n", col = col, xjust = 1, yjust = 1) title(main = varnames(x)[j]) if (j==1) oldpar <- c(oldpar, par(ask = ask)) } return(invisible(y)) } "gelman.preplot" <- function (x, bin.width = bin.width, max.bins = max.bins, confidence = confidence, transform = transform, autoburnin = autoburnin) { x <- as.mcmc.list(x) nbin <- min(floor((niter(x) - 50)/thin(x)), max.bins) if (nbin < 1) { stop("Insufficient iterations to produce Gelman-Rubin plot") } binw <- floor((niter(x) - 50)/nbin) last.iter <- c(seq(from = start(x) + 50 * thin(x), by = binw * thin(x), length = nbin), end(x)) shrink <- array(dim = c(nbin + 1, nvar(x), 2)) dimnames(shrink) <- list(last.iter, varnames(x), c("median", paste(50 * (confidence + 1), "%", sep = "")) ) for (i in 1:(nbin + 1)) { shrink[i, , ] <- gelman.diag(window(x, end = last.iter[i]), confidence = confidence, transform = transform, autoburnin = autoburnin, multivariate = FALSE)$psrf } all.na <- apply(is.na(shrink[, , 1, drop = FALSE]), 2, all) if (any(all.na)) { cat("\n******* Error: *******\n") cat("Cannot compute Gelman & Rubin's diagnostic for any chain \n") cat("segments for variables", varnames(x)[all.na], "\n") cat("This indicates convergence failure\n") } return(list(shrink = shrink, last.iter = last.iter)) } if (!is.R()){ qr.solve <- function (a, b, tol = 1e-07) { if (!is.qr(a)) a <- qr(a, tol = tol) nc <- ncol(a$qr) if (a$rank != nc) stop("singular matrix 'a' in solve") if (missing(b)) { if (nc != nrow(a$qr)) stop("only square matrices can be inverted") b <- diag(1, nc) } return(qr.coef(a, b)) } }