R Under development (unstable) (2017-03-10 r72326) -- "Unsuffered Consequences" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > pkgname <- "rpart" > source(file.path(R.home("share"), "R", "examples-header.R")) > options(warn = 1) > library('rpart') > > base::assign(".oldSearch", base::search(), pos = 'CheckExEnv') > cleanEx() > nameEx("car.test.frame") > ### * car.test.frame > > flush(stderr()); flush(stdout()) > > ### Name: car.test.frame > ### Title: Automobile Data from 'Consumer Reports' 1990 > ### Aliases: car.test.frame > ### Keywords: datasets > > ### ** Examples > > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > summary(z.auto) Call: rpart(formula = Mileage ~ Weight, data = car.test.frame) n= 60 CP nsplit rel error xerror xstd 1 0.59534912 0 1.0000000 1.0319924 0.17931937 2 0.13452819 1 0.4046509 0.4875114 0.07613003 3 0.01282843 2 0.2701227 0.3802248 0.06685452 4 0.01000000 3 0.2572943 0.3945980 0.06605572 Variable importance Weight 100 Node number 1: 60 observations, complexity param=0.5953491 mean=24.58333, MSE=22.57639 left son=2 (45 obs) right son=3 (15 obs) Primary splits: Weight < 2567.5 to the right, improve=0.5953491, (0 missing) Node number 2: 45 observations, complexity param=0.1345282 mean=22.46667, MSE=8.026667 left son=4 (22 obs) right son=5 (23 obs) Primary splits: Weight < 3087.5 to the right, improve=0.5045118, (0 missing) Node number 3: 15 observations mean=30.93333, MSE=12.46222 Node number 4: 22 observations mean=20.40909, MSE=2.78719 Node number 5: 23 observations, complexity param=0.01282843 mean=24.43478, MSE=5.115312 left son=10 (15 obs) right son=11 (8 obs) Primary splits: Weight < 2747.5 to the right, improve=0.1476996, (0 missing) Node number 10: 15 observations mean=23.8, MSE=4.026667 Node number 11: 8 observations mean=25.625, MSE=4.984375 > > > > cleanEx() > nameEx("car90") > ### * car90 > > flush(stderr()); flush(stdout()) > > ### Name: car90 > ### Title: Automobile Data from 'Consumer Reports' 1990 > ### Aliases: car90 > ### Keywords: datasets > > ### ** Examples > > data(car90) > plot(car90$Price/1000, car90$Weight, + xlab = "Price (thousands)", ylab = "Weight (lbs)") > mlowess <- function(x, y, ...) { + keep <- !(is.na(x) | is.na(y)) + lowess(x[keep], y[keep], ...) + } > with(car90, lines(mlowess(Price/1000, Weight, f = 0.5))) > > > > cleanEx() > nameEx("cu.summary") > ### * cu.summary > > flush(stderr()); flush(stdout()) > > ### Name: cu.summary > ### Title: Automobile Data from 'Consumer Reports' 1990 > ### Aliases: cu.summary > ### Keywords: datasets > > ### ** Examples > > fit <- rpart(Price ~ Mileage + Type + Country, cu.summary) > par(xpd = TRUE) > plot(fit, compress = TRUE) > text(fit, use.n = TRUE) > > > > graphics::par(get("par.postscript", pos = 'CheckExEnv')) > cleanEx() > nameEx("kyphosis") > ### * kyphosis > > flush(stderr()); flush(stdout()) > > ### Name: kyphosis > ### Title: Data on Children who have had Corrective Spinal Surgery > ### Aliases: kyphosis > ### Keywords: datasets > > ### ** Examples > > fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis) > fit2 <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis, + parms = list(prior = c(0.65, 0.35), split = "information")) > fit3 <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis, + control = rpart.control(cp = 0.05)) > par(mfrow = c(1,2), xpd = TRUE) > plot(fit) > text(fit, use.n = TRUE) > plot(fit2) > text(fit2, use.n = TRUE) > > > > graphics::par(get("par.postscript", pos = 'CheckExEnv')) > cleanEx() > nameEx("meanvar.rpart") > ### * meanvar.rpart > > flush(stderr()); flush(stdout()) > > ### Name: meanvar.rpart > ### Title: Mean-Variance Plot for an Rpart Object > ### Aliases: meanvar meanvar.rpart > ### Keywords: tree > > ### ** Examples > > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > meanvar(z.auto, log = 'xy') > > > > cleanEx() > nameEx("path.rpart") > ### * path.rpart > > flush(stderr()); flush(stdout()) > > ### Name: path.rpart > ### Title: Follow Paths to Selected Nodes of an Rpart Object > ### Aliases: path.rpart > ### Keywords: tree > > ### ** Examples > > fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis) > print(fit) n= 81 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 81 17 absent (0.79012346 0.20987654) 2) Start>=8.5 62 6 absent (0.90322581 0.09677419) 4) Start>=14.5 29 0 absent (1.00000000 0.00000000) * 5) Start< 14.5 33 6 absent (0.81818182 0.18181818) 10) Age< 55 12 0 absent (1.00000000 0.00000000) * 11) Age>=55 21 6 absent (0.71428571 0.28571429) 22) Age>=111 14 2 absent (0.85714286 0.14285714) * 23) Age< 111 7 3 present (0.42857143 0.57142857) * 3) Start< 8.5 19 8 present (0.42105263 0.57894737) * > path.rpart(fit, node = c(11, 22)) node number: 11 root Start>=8.5 Start< 14.5 Age>=55 node number: 22 root Start>=8.5 Start< 14.5 Age>=55 Age>=111 > > > > cleanEx() > nameEx("plot.rpart") > ### * plot.rpart > > flush(stderr()); flush(stdout()) > > ### Name: plot.rpart > ### Title: Plot an Rpart Object > ### Aliases: plot.rpart > ### Keywords: tree > > ### ** Examples > > fit <- rpart(Price ~ Mileage + Type + Country, cu.summary) > par(xpd = TRUE) > plot(fit, compress = TRUE) > text(fit, use.n = TRUE) > > > > graphics::par(get("par.postscript", pos = 'CheckExEnv')) > cleanEx() > nameEx("post.rpart") > ### * post.rpart > > flush(stderr()); flush(stdout()) > > ### Name: post.rpart > ### Title: PostScript Presentation Plot of an Rpart Object > ### Aliases: post.rpart post > ### Keywords: tree > > ### ** Examples > > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > post(z.auto, file = "") # display tree on active device > # now construct postscript version on file "pretty.ps" > # with no title > post(z.auto, file = "pretty.ps", title = " ") > z.hp <- rpart(Mileage ~ Weight + HP, car.test.frame) > post(z.hp) > > > > cleanEx() > nameEx("predict.rpart") > ### * predict.rpart > > flush(stderr()); flush(stdout()) > > ### Name: predict.rpart > ### Title: Predictions from a Fitted Rpart Object > ### Aliases: predict.rpart > ### Keywords: tree > > ### ** Examples > > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > predict(z.auto) Eagle Summit 4 Ford Escort 4 30.93333 30.93333 Ford Festiva 4 Honda Civic 4 30.93333 30.93333 Mazda Protege 4 Mercury Tracer 4 30.93333 30.93333 Nissan Sentra 4 Pontiac LeMans 4 30.93333 30.93333 Subaru Loyale 4 Subaru Justy 3 30.93333 30.93333 Toyota Corolla 4 Toyota Tercel 4 30.93333 30.93333 Volkswagen Jetta 4 Chevrolet Camaro V8 30.93333 20.40909 Dodge Daytona Ford Mustang V8 23.80000 20.40909 Ford Probe Honda Civic CRX Si 4 25.62500 30.93333 Honda Prelude Si 4WS 4 Nissan 240SX 4 25.62500 23.80000 Plymouth Laser Subaru XT 4 23.80000 30.93333 Audi 80 4 Buick Skylark 4 25.62500 25.62500 Chevrolet Beretta 4 Chrysler Le Baron V6 25.62500 23.80000 Ford Tempo 4 Honda Accord 4 23.80000 23.80000 Mazda 626 4 Mitsubishi Galant 4 23.80000 25.62500 Mitsubishi Sigma V6 Nissan Stanza 4 20.40909 23.80000 Oldsmobile Calais 4 Peugeot 405 4 25.62500 25.62500 Subaru Legacy 4 Toyota Camry 4 23.80000 23.80000 Volvo 240 4 Acura Legend V6 23.80000 20.40909 Buick Century 4 Chrysler Le Baron Coupe 23.80000 23.80000 Chrysler New Yorker V6 Eagle Premier V6 20.40909 20.40909 Ford Taurus V6 Ford Thunderbird V6 20.40909 20.40909 Hyundai Sonata 4 Mazda 929 V6 23.80000 20.40909 Nissan Maxima V6 Oldsmobile Cutlass Ciera 4 20.40909 23.80000 Oldsmobile Cutlass Supreme V6 Toyota Cressida 6 20.40909 20.40909 Buick Le Sabre V6 Chevrolet Caprice V8 20.40909 20.40909 Ford LTD Crown Victoria V8 Chevrolet Lumina APV V6 20.40909 20.40909 Dodge Grand Caravan V6 Ford Aerostar V6 20.40909 20.40909 Mazda MPV V6 Mitsubishi Wagon 4 20.40909 20.40909 Nissan Axxess 4 Nissan Van 4 20.40909 20.40909 > > fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis) > predict(fit, type = "prob") # class probabilities (default) absent present 1 0.4210526 0.5789474 2 0.8571429 0.1428571 3 0.4210526 0.5789474 4 0.4210526 0.5789474 5 1.0000000 0.0000000 6 1.0000000 0.0000000 7 1.0000000 0.0000000 8 1.0000000 0.0000000 9 1.0000000 0.0000000 10 0.4285714 0.5714286 11 0.4285714 0.5714286 12 1.0000000 0.0000000 13 0.4210526 0.5789474 14 1.0000000 0.0000000 15 1.0000000 0.0000000 16 1.0000000 0.0000000 17 1.0000000 0.0000000 18 0.8571429 0.1428571 19 1.0000000 0.0000000 20 1.0000000 0.0000000 21 1.0000000 0.0000000 22 0.4210526 0.5789474 23 0.4285714 0.5714286 24 0.4210526 0.5789474 25 0.4210526 0.5789474 26 1.0000000 0.0000000 27 0.4210526 0.5789474 28 0.4285714 0.5714286 29 1.0000000 0.0000000 30 1.0000000 0.0000000 31 1.0000000 0.0000000 32 0.8571429 0.1428571 33 0.8571429 0.1428571 34 1.0000000 0.0000000 35 0.8571429 0.1428571 36 1.0000000 0.0000000 37 1.0000000 0.0000000 38 0.4210526 0.5789474 39 1.0000000 0.0000000 40 0.4285714 0.5714286 41 0.4210526 0.5789474 42 1.0000000 0.0000000 43 0.4210526 0.5789474 44 0.4210526 0.5789474 45 1.0000000 0.0000000 46 0.8571429 0.1428571 47 1.0000000 0.0000000 48 0.8571429 0.1428571 49 0.4210526 0.5789474 50 0.8571429 0.1428571 51 0.4285714 0.5714286 52 1.0000000 0.0000000 53 0.4210526 0.5789474 54 1.0000000 0.0000000 55 1.0000000 0.0000000 56 1.0000000 0.0000000 57 1.0000000 0.0000000 58 0.4210526 0.5789474 59 1.0000000 0.0000000 60 0.4285714 0.5714286 61 0.4210526 0.5789474 62 0.4210526 0.5789474 63 0.4210526 0.5789474 64 1.0000000 0.0000000 65 1.0000000 0.0000000 66 1.0000000 0.0000000 67 1.0000000 0.0000000 68 0.8571429 0.1428571 69 1.0000000 0.0000000 70 1.0000000 0.0000000 71 0.8571429 0.1428571 72 0.8571429 0.1428571 73 1.0000000 0.0000000 74 0.8571429 0.1428571 75 1.0000000 0.0000000 76 1.0000000 0.0000000 77 0.8571429 0.1428571 78 1.0000000 0.0000000 79 0.8571429 0.1428571 80 0.4210526 0.5789474 81 1.0000000 0.0000000 > predict(fit, type = "vector") # level numbers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 1 2 2 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 1 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 2 2 1 1 1 1 1 1 1 1 1 2 1 2 2 1 2 2 1 1 1 1 2 1 2 1 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 2 1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 79 80 81 1 2 1 > predict(fit, type = "class") # factor 1 2 3 4 5 6 7 8 9 10 present absent present present absent absent absent absent absent present 11 12 13 14 15 16 17 18 19 20 present absent present absent absent absent absent absent absent absent 21 22 23 24 25 26 27 28 29 30 absent present present present present absent present present absent absent 31 32 33 34 35 36 37 38 39 40 absent absent absent absent absent absent absent present absent present 41 42 43 44 45 46 47 48 49 50 present absent present present absent absent absent absent present absent 51 52 53 54 55 56 57 58 59 60 present absent present absent absent absent absent present absent present 61 62 63 64 65 66 67 68 69 70 present present present absent absent absent absent absent absent absent 71 72 73 74 75 76 77 78 79 80 absent absent absent absent absent absent absent absent absent present 81 absent Levels: absent present > predict(fit, type = "matrix") # level number, class frequencies, probabilities [,1] [,2] [,3] [,4] [,5] [,6] 1 2 8 11 0.4210526 0.5789474 0.23456790 2 1 12 2 0.8571429 0.1428571 0.17283951 3 2 8 11 0.4210526 0.5789474 0.23456790 4 2 8 11 0.4210526 0.5789474 0.23456790 5 1 29 0 1.0000000 0.0000000 0.35802469 6 1 29 0 1.0000000 0.0000000 0.35802469 7 1 29 0 1.0000000 0.0000000 0.35802469 8 1 29 0 1.0000000 0.0000000 0.35802469 9 1 29 0 1.0000000 0.0000000 0.35802469 10 2 3 4 0.4285714 0.5714286 0.08641975 11 2 3 4 0.4285714 0.5714286 0.08641975 12 1 29 0 1.0000000 0.0000000 0.35802469 13 2 8 11 0.4210526 0.5789474 0.23456790 14 1 12 0 1.0000000 0.0000000 0.14814815 15 1 29 0 1.0000000 0.0000000 0.35802469 16 1 29 0 1.0000000 0.0000000 0.35802469 17 1 29 0 1.0000000 0.0000000 0.35802469 18 1 12 2 0.8571429 0.1428571 0.17283951 19 1 29 0 1.0000000 0.0000000 0.35802469 20 1 12 0 1.0000000 0.0000000 0.14814815 21 1 29 0 1.0000000 0.0000000 0.35802469 22 2 8 11 0.4210526 0.5789474 0.23456790 23 2 3 4 0.4285714 0.5714286 0.08641975 24 2 8 11 0.4210526 0.5789474 0.23456790 25 2 8 11 0.4210526 0.5789474 0.23456790 26 1 12 0 1.0000000 0.0000000 0.14814815 27 2 8 11 0.4210526 0.5789474 0.23456790 28 2 3 4 0.4285714 0.5714286 0.08641975 29 1 29 0 1.0000000 0.0000000 0.35802469 30 1 29 0 1.0000000 0.0000000 0.35802469 31 1 29 0 1.0000000 0.0000000 0.35802469 32 1 12 2 0.8571429 0.1428571 0.17283951 33 1 12 2 0.8571429 0.1428571 0.17283951 34 1 29 0 1.0000000 0.0000000 0.35802469 35 1 12 2 0.8571429 0.1428571 0.17283951 36 1 29 0 1.0000000 0.0000000 0.35802469 37 1 12 0 1.0000000 0.0000000 0.14814815 38 2 8 11 0.4210526 0.5789474 0.23456790 39 1 12 0 1.0000000 0.0000000 0.14814815 40 2 3 4 0.4285714 0.5714286 0.08641975 41 2 8 11 0.4210526 0.5789474 0.23456790 42 1 12 0 1.0000000 0.0000000 0.14814815 43 2 8 11 0.4210526 0.5789474 0.23456790 44 2 8 11 0.4210526 0.5789474 0.23456790 45 1 29 0 1.0000000 0.0000000 0.35802469 46 1 12 2 0.8571429 0.1428571 0.17283951 47 1 29 0 1.0000000 0.0000000 0.35802469 48 1 12 2 0.8571429 0.1428571 0.17283951 49 2 8 11 0.4210526 0.5789474 0.23456790 50 1 12 2 0.8571429 0.1428571 0.17283951 51 2 3 4 0.4285714 0.5714286 0.08641975 52 1 29 0 1.0000000 0.0000000 0.35802469 53 2 8 11 0.4210526 0.5789474 0.23456790 54 1 29 0 1.0000000 0.0000000 0.35802469 55 1 29 0 1.0000000 0.0000000 0.35802469 56 1 29 0 1.0000000 0.0000000 0.35802469 57 1 12 0 1.0000000 0.0000000 0.14814815 58 2 8 11 0.4210526 0.5789474 0.23456790 59 1 12 0 1.0000000 0.0000000 0.14814815 60 2 3 4 0.4285714 0.5714286 0.08641975 61 2 8 11 0.4210526 0.5789474 0.23456790 62 2 8 11 0.4210526 0.5789474 0.23456790 63 2 8 11 0.4210526 0.5789474 0.23456790 64 1 29 0 1.0000000 0.0000000 0.35802469 65 1 29 0 1.0000000 0.0000000 0.35802469 66 1 12 0 1.0000000 0.0000000 0.14814815 67 1 29 0 1.0000000 0.0000000 0.35802469 68 1 12 2 0.8571429 0.1428571 0.17283951 69 1 12 0 1.0000000 0.0000000 0.14814815 70 1 29 0 1.0000000 0.0000000 0.35802469 71 1 12 2 0.8571429 0.1428571 0.17283951 72 1 12 2 0.8571429 0.1428571 0.17283951 73 1 29 0 1.0000000 0.0000000 0.35802469 74 1 12 2 0.8571429 0.1428571 0.17283951 75 1 29 0 1.0000000 0.0000000 0.35802469 76 1 29 0 1.0000000 0.0000000 0.35802469 77 1 12 2 0.8571429 0.1428571 0.17283951 78 1 12 0 1.0000000 0.0000000 0.14814815 79 1 12 2 0.8571429 0.1428571 0.17283951 80 2 8 11 0.4210526 0.5789474 0.23456790 81 1 12 0 1.0000000 0.0000000 0.14814815 > > sub <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25)) > fit <- rpart(Species ~ ., data = iris, subset = sub) > fit n= 75 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 75 50 setosa (0.33333333 0.33333333 0.33333333) 2) Petal.Length< 2.35 25 0 setosa (1.00000000 0.00000000 0.00000000) * 3) Petal.Length>=2.35 50 25 versicolor (0.00000000 0.50000000 0.50000000) 6) Petal.Width< 1.65 27 2 versicolor (0.00000000 0.92592593 0.07407407) * 7) Petal.Width>=1.65 23 0 virginica (0.00000000 0.00000000 1.00000000) * > table(predict(fit, iris[-sub,], type = "class"), iris[-sub, "Species"]) setosa versicolor virginica setosa 25 0 0 versicolor 0 23 2 virginica 0 2 23 > > > > cleanEx() > nameEx("print.rpart") > ### * print.rpart > > flush(stderr()); flush(stdout()) > > ### Name: print.rpart > ### Title: Print an Rpart Object > ### Aliases: print.rpart > ### Keywords: tree > > ### ** Examples > > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > z.auto n= 60 node), split, n, deviance, yval * denotes terminal node 1) root 60 1354.58300 24.58333 2) Weight>=2567.5 45 361.20000 22.46667 4) Weight>=3087.5 22 61.31818 20.40909 * 5) Weight< 3087.5 23 117.65220 24.43478 10) Weight>=2747.5 15 60.40000 23.80000 * 11) Weight< 2747.5 8 39.87500 25.62500 * 3) Weight< 2567.5 15 186.93330 30.93333 * > ## Not run: > ##D node), split, n, deviance, yval > ##D * denotes terminal node > ##D > ##D 1) root 60 1354.58300 24.58333 > ##D 2) Weight>=2567.5 45 361.20000 22.46667 > ##D 4) Weight>=3087.5 22 61.31818 20.40909 * > ##D 5) Weight<3087.5 23 117.65220 24.43478 > ##D 10) Weight>=2747.5 15 60.40000 23.80000 * > ##D 11) Weight<2747.5 8 39.87500 25.62500 * > ##D 3) Weight<2567.5 15 186.93330 30.93333 * > ## End(Not run) > > > cleanEx() > nameEx("printcp") > ### * printcp > > flush(stderr()); flush(stdout()) > > ### Name: printcp > ### Title: Displays CP table for Fitted Rpart Object > ### Aliases: printcp > ### Keywords: tree > > ### ** Examples > > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > printcp(z.auto) Regression tree: rpart(formula = Mileage ~ Weight, data = car.test.frame) Variables actually used in tree construction: [1] Weight Root node error: 1354.6/60 = 22.576 n= 60 CP nsplit rel error xerror xstd 1 0.595349 0 1.00000 1.03199 0.179319 2 0.134528 1 0.40465 0.48751 0.076130 3 0.012828 2 0.27012 0.38022 0.066855 4 0.010000 3 0.25729 0.39460 0.066056 > ## Not run: > ##D Regression tree: > ##D rpart(formula = Mileage ~ Weight, data = car.test.frame) > ##D > ##D Variables actually used in tree construction: > ##D [1] Weight > ##D > ##D Root node error: 1354.6/60 = 22.576 > ##D > ##D CP nsplit rel error xerror xstd > ##D 1 0.595349 0 1.00000 1.03436 0.178526 > ##D 2 0.134528 1 0.40465 0.60508 0.105217 > ##D 3 0.012828 2 0.27012 0.45153 0.083330 > ##D 4 0.010000 3 0.25729 0.44826 0.076998 > ## End(Not run) > > > cleanEx() > nameEx("prune.rpart") > ### * prune.rpart > > flush(stderr()); flush(stdout()) > > ### Name: prune.rpart > ### Title: Cost-complexity Pruning of an Rpart Object > ### Aliases: prune.rpart prune > ### Keywords: tree > > ### ** Examples > > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > zp <- prune(z.auto, cp = 0.1) > plot(zp) #plot smaller rpart object > > > > cleanEx() > nameEx("residuals.rpart") > ### * residuals.rpart > > flush(stderr()); flush(stdout()) > > ### Name: residuals.rpart > ### Title: Residuals From a Fitted Rpart Object > ### Aliases: residuals.rpart > ### Keywords: tree > > ### ** Examples > > fit <- rpart(skips ~ Opening + Solder + Mask + PadType + Panel, + data = solder, method = "anova") > summary(residuals(fit)) Min. 1st Qu. Median Mean 3rd Qu. Max. -13.8000 -1.0361 -0.6833 0.0000 0.9639 16.2000 > plot(predict(fit),residuals(fit)) > > > > cleanEx() > nameEx("rpart") > ### * rpart > > flush(stderr()); flush(stdout()) > > ### Name: rpart > ### Title: Recursive Partitioning and Regression Trees > ### Aliases: rpart > ### Keywords: tree > > ### ** Examples > > fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis) > fit2 <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis, + parms = list(prior = c(.65,.35), split = "information")) > fit3 <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis, + control = rpart.control(cp = 0.05)) > par(mfrow = c(1,2), xpd = NA) # otherwise on some devices the text is clipped > plot(fit) > text(fit, use.n = TRUE) > plot(fit2) > text(fit2, use.n = TRUE) > > > > graphics::par(get("par.postscript", pos = 'CheckExEnv')) > cleanEx() > nameEx("rsq.rpart") > ### * rsq.rpart > > flush(stderr()); flush(stdout()) > > ### Name: rsq.rpart > ### Title: Plots the Approximate R-Square for the Different Splits > ### Aliases: rsq.rpart > ### Keywords: tree > > ### ** Examples > > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > rsq.rpart(z.auto) Regression tree: rpart(formula = Mileage ~ Weight, data = car.test.frame) Variables actually used in tree construction: [1] Weight Root node error: 1354.6/60 = 22.576 n= 60 CP nsplit rel error xerror xstd 1 0.595349 0 1.00000 1.03199 0.179319 2 0.134528 1 0.40465 0.48751 0.076130 3 0.012828 2 0.27012 0.38022 0.066855 4 0.010000 3 0.25729 0.39460 0.066056 > > > > cleanEx() > nameEx("snip.rpart") > ### * snip.rpart > > flush(stderr()); flush(stdout()) > > ### Name: snip.rpart > ### Title: Snip Subtrees of an Rpart Object > ### Aliases: snip.rpart > ### Keywords: tree > > ### ** Examples > > ## dataset not in R > ## Not run: > ##D z.survey <- rpart(market.survey) # grow the rpart object > ##D plot(z.survey) # plot the tree > ##D z.survey2 <- snip.rpart(z.survey, toss = 2) # trim subtree at node 2 > ##D plot(z.survey2) # plot new tree > ##D > ##D # can also interactively select the node using the mouse in the > ##D # graphics window > ## End(Not run) > > > cleanEx() > nameEx("solder") > ### * solder > > flush(stderr()); flush(stdout()) > > ### Name: solder > ### Title: Soldering of Components on Printed-Circuit Boards > ### Aliases: solder > ### Keywords: datasets > > ### ** Examples > > fit <- rpart(skips ~ Opening + Solder + Mask + PadType + Panel, + data = solder, method = "anova") > summary(residuals(fit)) Min. 1st Qu. Median Mean 3rd Qu. Max. -13.8000 -1.0361 -0.6833 0.0000 0.9639 16.2000 > plot(predict(fit), residuals(fit)) > > > > cleanEx() > nameEx("stagec") > ### * stagec > > flush(stderr()); flush(stdout()) > > ### Name: stagec > ### Title: Stage C Prostate Cancer > ### Aliases: stagec > ### Keywords: datasets > > ### ** Examples > > require(survival) Loading required package: survival > rpart(Surv(pgtime, pgstat) ~ ., stagec) n= 146 node), split, n, deviance, yval * denotes terminal node 1) root 146 192.111100 1.0000000 2) grade< 2.5 61 44.799010 0.3634439 4) g2< 11.36 33 9.117405 0.1229835 * 5) g2>=11.36 28 27.602190 0.7345610 10) gleason< 5.5 20 14.297110 0.5304115 * 11) gleason>=5.5 8 11.094650 1.3069940 * 3) grade>=2.5 85 122.441500 1.6148600 6) age>=56.5 75 103.062900 1.4255040 12) gleason< 7.5 50 66.119800 1.1407320 24) g2< 13.475 24 27.197170 0.8007306 * 25) g2>=13.475 26 36.790960 1.4570210 50) g2>=17.915 15 20.332740 0.9789825 * 51) g2< 17.915 11 13.459010 2.1714480 * 13) gleason>=7.5 25 33.487250 2.0307290 26) g2>=15.29 10 11.588480 1.2156230 * 27) g2< 15.29 15 18.939150 2.7053610 * 7) age< 56.5 10 13.769010 3.1822320 * > > > > cleanEx() detaching ‘package:survival’ > nameEx("summary.rpart") > ### * summary.rpart > > flush(stderr()); flush(stdout()) > > ### Name: summary.rpart > ### Title: Summarize a Fitted Rpart Object > ### Aliases: summary.rpart > ### Keywords: tree > > ### ** Examples > > ## a regression tree > z.auto <- rpart(Mileage ~ Weight, car.test.frame) > summary(z.auto) Call: rpart(formula = Mileage ~ Weight, data = car.test.frame) n= 60 CP nsplit rel error xerror xstd 1 0.59534912 0 1.0000000 1.0319924 0.17931937 2 0.13452819 1 0.4046509 0.4875114 0.07613003 3 0.01282843 2 0.2701227 0.3802248 0.06685452 4 0.01000000 3 0.2572943 0.3945980 0.06605572 Variable importance Weight 100 Node number 1: 60 observations, complexity param=0.5953491 mean=24.58333, MSE=22.57639 left son=2 (45 obs) right son=3 (15 obs) Primary splits: Weight < 2567.5 to the right, improve=0.5953491, (0 missing) Node number 2: 45 observations, complexity param=0.1345282 mean=22.46667, MSE=8.026667 left son=4 (22 obs) right son=5 (23 obs) Primary splits: Weight < 3087.5 to the right, improve=0.5045118, (0 missing) Node number 3: 15 observations mean=30.93333, MSE=12.46222 Node number 4: 22 observations mean=20.40909, MSE=2.78719 Node number 5: 23 observations, complexity param=0.01282843 mean=24.43478, MSE=5.115312 left son=10 (15 obs) right son=11 (8 obs) Primary splits: Weight < 2747.5 to the right, improve=0.1476996, (0 missing) Node number 10: 15 observations mean=23.8, MSE=4.026667 Node number 11: 8 observations mean=25.625, MSE=4.984375 > > ## a classification tree with multiple variables and surrogate splits. > summary(rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)) Call: rpart(formula = Kyphosis ~ Age + Number + Start, data = kyphosis) n= 81 CP nsplit rel error xerror xstd 1 0.17647059 0 1.0000000 1.000000 0.2155872 2 0.01960784 1 0.8235294 1.352941 0.2387187 3 0.01000000 4 0.7647059 1.294118 0.2354756 Variable importance Start Age Number 64 24 12 Node number 1: 81 observations, complexity param=0.1764706 predicted class=absent expected loss=0.2098765 P(node) =1 class counts: 64 17 probabilities: 0.790 0.210 left son=2 (62 obs) right son=3 (19 obs) Primary splits: Start < 8.5 to the right, improve=6.762330, (0 missing) Number < 5.5 to the left, improve=2.866795, (0 missing) Age < 39.5 to the left, improve=2.250212, (0 missing) Surrogate splits: Number < 6.5 to the left, agree=0.802, adj=0.158, (0 split) Node number 2: 62 observations, complexity param=0.01960784 predicted class=absent expected loss=0.09677419 P(node) =0.7654321 class counts: 56 6 probabilities: 0.903 0.097 left son=4 (29 obs) right son=5 (33 obs) Primary splits: Start < 14.5 to the right, improve=1.0205280, (0 missing) Age < 55 to the left, improve=0.6848635, (0 missing) Number < 4.5 to the left, improve=0.2975332, (0 missing) Surrogate splits: Number < 3.5 to the left, agree=0.645, adj=0.241, (0 split) Age < 16 to the left, agree=0.597, adj=0.138, (0 split) Node number 3: 19 observations predicted class=present expected loss=0.4210526 P(node) =0.2345679 class counts: 8 11 probabilities: 0.421 0.579 Node number 4: 29 observations predicted class=absent expected loss=0 P(node) =0.3580247 class counts: 29 0 probabilities: 1.000 0.000 Node number 5: 33 observations, complexity param=0.01960784 predicted class=absent expected loss=0.1818182 P(node) =0.4074074 class counts: 27 6 probabilities: 0.818 0.182 left son=10 (12 obs) right son=11 (21 obs) Primary splits: Age < 55 to the left, improve=1.2467530, (0 missing) Start < 12.5 to the right, improve=0.2887701, (0 missing) Number < 3.5 to the right, improve=0.1753247, (0 missing) Surrogate splits: Start < 9.5 to the left, agree=0.758, adj=0.333, (0 split) Number < 5.5 to the right, agree=0.697, adj=0.167, (0 split) Node number 10: 12 observations predicted class=absent expected loss=0 P(node) =0.1481481 class counts: 12 0 probabilities: 1.000 0.000 Node number 11: 21 observations, complexity param=0.01960784 predicted class=absent expected loss=0.2857143 P(node) =0.2592593 class counts: 15 6 probabilities: 0.714 0.286 left son=22 (14 obs) right son=23 (7 obs) Primary splits: Age < 111 to the right, improve=1.71428600, (0 missing) Start < 12.5 to the right, improve=0.79365080, (0 missing) Number < 3.5 to the right, improve=0.07142857, (0 missing) Node number 22: 14 observations predicted class=absent expected loss=0.1428571 P(node) =0.1728395 class counts: 12 2 probabilities: 0.857 0.143 Node number 23: 7 observations predicted class=present expected loss=0.4285714 P(node) =0.08641975 class counts: 3 4 probabilities: 0.429 0.571 > > > > cleanEx() > nameEx("text.rpart") > ### * text.rpart > > flush(stderr()); flush(stdout()) > > ### Name: text.rpart > ### Title: Place Text on a Dendrogram Plot > ### Aliases: text.rpart > ### Keywords: tree > > ### ** Examples > > freen.tr <- rpart(y ~ ., freeny) > par(xpd = TRUE) > plot(freen.tr) > text(freen.tr, use.n = TRUE, all = TRUE) > > > > graphics::par(get("par.postscript", pos = 'CheckExEnv')) > cleanEx() > nameEx("xpred.rpart") > ### * xpred.rpart > > flush(stderr()); flush(stdout()) > > ### Name: xpred.rpart > ### Title: Return Cross-Validated Predictions > ### Aliases: xpred.rpart > ### Keywords: tree > > ### ** Examples > > fit <- rpart(Mileage ~ Weight, car.test.frame) > xmat <- xpred.rpart(fit) > xerr <- (xmat - car.test.frame$Mileage)^2 > apply(xerr, 2, sum) # cross-validated error estimate 0.79767456 0.28300396 0.04154257 0.01132626 1423.9568 740.4845 544.3925 536.6344 > > # approx same result as rel. error from printcp(fit) > apply(xerr, 2, sum)/var(car.test.frame$Mileage) 0.79767456 0.28300396 0.04154257 0.01132626 62.02162 32.25242 23.71147 23.37355 > printcp(fit) Regression tree: rpart(formula = Mileage ~ Weight, data = car.test.frame) Variables actually used in tree construction: [1] Weight Root node error: 1354.6/60 = 22.576 n= 60 CP nsplit rel error xerror xstd 1 0.595349 0 1.00000 1.03199 0.179319 2 0.134528 1 0.40465 0.48751 0.076130 3 0.012828 2 0.27012 0.38022 0.066855 4 0.010000 3 0.25729 0.39460 0.066056 > > > > ### *