\name{nearPD} \alias{nearPD} \title{Nearest Matrix to a Positive Definite Matrix} \description{ Computes the nearest positive definite matrix to an approximate one, typically a correlation or variance-covariance matrix. } \usage{ nearPD(x, corr = FALSE, keepDiag = FALSE, do2eigen = TRUE, only.values = FALSE, eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08, maxit = 100, trace = FALSE) } \arguments{ \item{x}{numeric \eqn{n \times n}{n * n} approximately positive definite matrix, typically an approximation to a correlation or covariance matrix.} \item{corr}{logical indicating if the matrix should be a \emph{correlation} matrix.} \item{keepDiag}{logical, generalizing \code{corr}: if \code{TRUE}, the resulting matrix should have the same diagonal (\code{\link{diag}(x)}) as the input matrix.} \item{do2eigen}{logical indicating if a \code{\link[sfsmisc]{posdefify}()} eigen step should be applied to the result of the Hingham algorithm.} \item{only.values}{logical; if \code{TRUE}, the result is just the vector of eigen values of the approximating matrix.} \item{eig.tol}{defines relative positiveness of eigenvalues compared to largest one, \eqn{\lambda_1}. Eigen values \eqn{\lambda_k} are treated as if zero when \eqn{\lambda_k / \lambda_1 <= eig.tol}.} \item{conv.tol}{convergence tolerance for Hingham algorithm.} \item{posd.tol}{tolerance for enforcing positive definiteness (in the final \code{posdefify} step when \code{do2eigen} is \code{TRUE}).} \item{maxit}{maximum number of iterations allowed.} \item{trace}{logical or integer specifying if convergence monitoring should be traced.} } \details{ This implements the algorithm of Higham (2002), and then forces positive definiteness using code from \code{\link[sfsmisc]{posdefify}}. The algorithm of Knol DL and ten Berge (1989) (not implemented here) is more general in (1) that it allows contraints to fix some rows (and columns) of the matrix and (2) to force the smallest eigenvalue to have a certain value. Note that setting \code{corr = TRUE} just sets \code{diag(.) <- 1} within the algorithm. } \value{ If \code{only.values = TRUE}, a numeric vector of eigen values of the approximating matrix; Otherwise, as by default, an S3 object of \code{\link{class}} \code{"nearPD"}, basically a list with components \item{mat}{a matrix of class \code{\linkS4class{dpoMatrix}}, the computed positive-definite matrix.} \item{eigenvalues}{numeric vector of eigen values of \code{mat}.} \item{corr}{logical, just the argument \code{corr}.} \item{normF}{the Frobenius norm (\code{\link{norm}(x-X, "F")}) of the difference between the original and the resulting matrix.} \item{iterations}{number of iterations needed.} \item{converged}{logical indicating if iterations converged.} } \references{%% more in /u/maechler/R/Pkgs/sfsmisc/man/posdefify.Rd Cheng, Sheung Hun and Higham, Nick (1998) A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization; \emph{SIAM J. Matrix Anal.\ Appl.}, \bold{19}, 1097--1110. Knol DL, ten Berge JMF (1989) Least-squares approximation of an improper correlation matrix by a proper one. \emph{Psychometrika} \bold{54}, 53--61. Highham (2002) Computing the nearest correlation matrix - a problem from finance; \emph{IMA Journal of Numerical Analysis} \bold{22}, 329--343. } \author{Jens Oehlschlaegel donated a first version. Subsequent changes by the Matrix package authors. } \seealso{A first version of this (with non-optional \code{corr=TRUE}) has been available as \code{\link[sfsmisc]{nearcor}()}; and more simple versions with a similar purpose \code{\link[sfsmisc]{posdefify}()}, both from package \pkg{sfsmisc}. } \examples{ set.seed(27) m <- matrix(round(rnorm(25),2), 5, 5) m <- m + t(m) diag(m) <- pmax(0, diag(m)) + 1 (m <- round(cov2cor(m), 2)) str(near.m <- nearPD(m, trace = TRUE)) round(near.m$mat, 2) norm(m - near.m$mat) # 1.102 if(require("sfsmisc")) { m2 <- posdefify(m) # a simpler approach norm(m - m2) # 1.185, i.e., slightly "less near" } round(nearPD(m, only.values=TRUE), 9) ## A longer example, extended from Jens' original, ## showing the effects of some of the options: pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826, 0.477, 1, 0.516, 0.233, 0.682, 0.75, 0.644, 0.516, 1, 0.599, 0.581, 0.742, 0.478, 0.233, 0.599, 1, 0.741, 0.8, 0.651, 0.682, 0.581, 0.741, 1, 0.798, 0.826, 0.75, 0.742, 0.8, 0.798, 1), nrow = 6, ncol = 6) nc. <- nearPD(pr, conv.tol = 1e-7) # default nc.$iterations # 2 nc.1 <- nearPD(pr, conv.tol = 1e-7, corr = TRUE) nc.1$iterations # 11 (!) ncr <- nearPD(pr, conv.tol = 1e-15) str(ncr)# 3 iterations ncr.1 <- nearPD(pr, conv.tol = 1e-15, corr = TRUE) ncr.1 $ iterations # 27 ! ## But indeed, the 'corr = TRUE' constraint did ensure a better solution; ## cov2cor() does not just fix it up equivalently : norm(pr - cov2cor(ncr$mat)) # = 0.09994 norm(pr - ncr.1$mat) # = 0.08746 } \keyword{algebra} \keyword{array}