R version 2.7.0 Under development (unstable) (2007-10-09 r43132) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #attach("../.Data") > #dyn.load('../loadmod.o') > postscript(file='Rtest.ps') > library(survival) > if (R.version$minor>2) options(na.action="na.exclude") > #options(na.action='na.omit', contrasts='contr.treatment') > # > # This data set caused problems for Splus 3.4 due to a mistake in > # my initial value code. Data courtesy Bob Treder at Statsci > # > capacitor <- read.table('data.capacitor', row.names=1, + col.names=c('', 'days', 'event', 'voltage')) > > fitig <- survreg(Surv(days, event)~voltage, + dist = "gaussian", data = capacitor) > summary(fitig) Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "gaussian") Value Std. Error z p (Intercept) 1764.9 163.387 10.80 3.36e-27 voltage -53.9 5.545 -9.72 2.56e-22 Log(scale) 4.8 0.105 45.56 0.00e+00 Scale= 121 Gaussian distribution Loglik(model)= -361.9 Loglik(intercept only)= -420.1 Chisq= 116.33 on 1 degrees of freedom, p= 0 Number of Newton-Raphson Iterations: 6 n= 125 > > fitix <- survreg(Surv(days, event)~voltage, + dist = "extreme", data = capacitor) > summary(fitix) Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "extreme") Value Std. Error z p (Intercept) 2055.59 180.349 11.4 4.28e-30 voltage -62.21 5.967 -10.4 1.88e-25 Log(scale) 4.53 0.108 41.9 0.00e+00 Scale= 92.9 Extreme value distribution Loglik(model)= -360 Loglik(intercept only)= -427.1 Chisq= 134.25 on 1 degrees of freedom, p= 0 Number of Newton-Raphson Iterations: 7 n= 125 > > fitil <- survreg(Surv(days, event)~voltage, + dist = "logistic", data = capacitor) > summary(fitil) Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "logistic") Value Std. Error z p (Intercept) 1811.56 148.853 12.2 4.48e-34 voltage -55.48 4.986 -11.1 9.39e-29 Log(scale) 4.19 0.117 35.8 2.03e-280 Scale= 66.3 Logistic distribution Loglik(model)= -360.4 Loglik(intercept only)= -423.7 Chisq= 126.5 on 1 degrees of freedom, p= 0 Number of Newton-Raphson Iterations: 6 n= 125 > > rm(fitil, fitig, fitix) > # > # Good initial values are key to this data set > # It killed v4 of survreg; > # data courtesy of Deborah Donnell, Fred Hutchinson Cancer Center > # > > donnell <- scan("data.donnell", what=list(time1=0, time2=0, status=0)) > donnell <- data.frame(donnell) > > dfit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell) > summary(dfit) Call: survreg(formula = Surv(time1, time2, status, type = "interval") ~ 1, data = donnell) Value Std. Error z p (Intercept) 2.390 0.804 2.972 0.00295 Log(scale) -0.237 0.346 -0.687 0.49232 Scale= 0.789 Weibull distribution Loglik(model)= -51 Loglik(intercept only)= -51 Number of Newton-Raphson Iterations: 10 n= 210 > > # > # Do a contour plot of the donnell data > # > npt <- 25 > beta0 <- seq(.4, 2.4, length=npt) > logsig <- seq(-1.4, 0.41, length=npt) > donlog <- matrix(0,npt, npt) > > for (i in 1:npt) { + for (j in 1:npt) { + fit <- survreg(Surv(time1, time2, status, type='interval') ~1, + donnell, init=c(beta0[i],logsig[j]), + control=list(maxiter=0)) + donlog[i,j] <- fit$log[1] + } + } > > clev <- -c(51, 51.5, 52:60, 65, 75, 85, 100, 150) > contour(beta0, logsig, pmax(donlog, -200), levels=clev, xlab="Intercept", + ylab="Log(sigma)") > points(2.39, log(.7885), pch=1, col=2) > title("Donnell data") > > # > # Compute the path of the iteration > # Step 2 isn't so good, and is followed by 3 iters of step-halving > # > niter <- 14 > donpath <- matrix(0,niter+1,2) > for (i in 0:niter){ + fit <- survreg(Surv(time1, time2, status, type='interval') ~1, + donnell, maxiter=i) + donpath[i+1,] <- c(fit$coef, log(fit$scale)) + } > points(donpath[,1], donpath[,2]) > lines(donpath[,1], donpath[,2], col=4) > > rm(beta0, logsig, niter, fit, npt, donlog, clev) > #lfit1 <- censorReg(censor(time, status) ~ age + ph.ecog + strata(sex),lung) > data(lung) > lfit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung) > lfit3 <- survreg(Surv(time, status) ~ sex + (age+ph.ecog)*strata(sex), lung) > > lfit4 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, + subset=(sex==1)) > lfit5 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, + subset=(sex==2)) > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > #aeq(lfit4$coef, lfit1[[1]]$coef) > #aeq(lfit4$scale, lfit1[[1]]$scale) > aeq(c(lfit4$scale, lfit5$scale), lfit3$scale ) [1] TRUE > #aeq(c(lfit4$scale, lfit5$scale), sapply(lfit1, function(x) x$scale)) > > # > # Test out ridge regression and splines > # > lfit0 <- survreg(Surv(time, status) ~1, lung) > lfit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), lung) > lfit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), lung) > lfit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, lung) > > lfit0 Call: survreg(formula = Surv(time, status) ~ 1, data = lung) Coefficients: (Intercept) 6.034904 Scale= 0.7593936 Loglik(model)= -1153.9 Loglik(intercept only)= -1153.9 n= 228 > lfit1 Call: survreg(formula = Surv(time, status) ~ age + ridge(ph.ecog, theta = 5), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.83082 0.42860 0.42860 254.0 1 0.00000 age -0.00783 0.00687 0.00687 1.3 1 0.25000 ridge(ph.ecog) -0.32032 0.08484 0.08405 14.2 1 0.00016 Scale= 0.738 Iterations: 1 outer, 5 Newton-Raphson Degrees of freedom for terms= 1 1 1 1 Likelihood ratio test=18.6 on 2 df, p=8.73e-05 n=227 (1 observation deleted due to missingness) > lfit2 Call: survreg(formula = Surv(time, status) ~ sex + ridge(age, ph.ecog, theta = 1), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.27163 0.45280 0.45210 191.84 1 0.0e+00 sex 0.40096 0.12371 0.12371 10.50 1 1.2e-03 ridge(age) -0.00746 0.00675 0.00674 1.22 1 2.7e-01 ridge(ph.ecog) -0.33848 0.08329 0.08314 16.51 1 4.8e-05 Scale= 0.731 Iterations: 1 outer, 6 Newton-Raphson Degrees of freedom for terms= 1 1 2 1 Likelihood ratio test=30 on 3 df, p=1.37e-06 n=227 (1 observation deleted due to missingness) > lfit3 Call: survreg(formula = Surv(time, status) ~ sex + age + ph.ecog, data = lung) Coefficients: (Intercept) sex age ph.ecog 6.27343525 0.40109054 -0.00747544 -0.33963810 Scale= 0.731109 Loglik(model)= -1132.4 Loglik(intercept only)= -1147.4 Chisq= 29.98 on 3 degrees of freedom, p= 1.4e-06 n=227 (1 observation deleted due to missingness) > > > xx <- pspline(lung$age, nterm=3, theta=.3) > xx <- matrix(unclass(xx), ncol=ncol(xx)) # the raw matrix > lfit4 <- survreg(Surv(time, status) ~xx, lung) > lfit5 <- survreg(Surv(time, status) ~age, lung) > > lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), lung) > plot(lung$age, predict(lfit6), xlab='Age', ylab="Spline prediction") > title("Lung Data") > > lfit7 <- survreg(Surv(time, status) ~ offset(lfit6$lin), lung) > > lfit4 Call: survreg(formula = Surv(time, status) ~ xx, data = lung) Coefficients: (Intercept) xx1 xx2 xx3 xx4 xx5 13.551290 -7.615741 -7.424565 -7.533378 -7.571272 -14.527489 Scale= 0.755741 Loglik(model)= -1150.1 Loglik(intercept only)= -1153.9 Chisq= 7.52 on 5 degrees of freedom, p= 0.19 n= 228 > lfit5 Call: survreg(formula = Surv(time, status) ~ age, data = lung) Coefficients: (Intercept) age 6.88712062 -0.01360829 Scale= 0.7587515 Loglik(model)= -1151.9 Loglik(intercept only)= -1153.9 Chisq= 3.91 on 1 degrees of freedom, p= 0.048 n= 228 > lfit6 Call: survreg(formula = Surv(time, status) ~ pspline(age, df = 2), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.5918 0.63681 0.41853 107.15 1.00 0.000 pspline(age, df = 2), lin -0.0136 0.00687 0.00687 3.94 1.00 0.047 pspline(age, df = 2), non 0.78 1.06 0.400 Scale= 0.756 Iterations: 4 outer, 12 Newton-Raphson Theta= 0.926 Degrees of freedom for terms= 0.4 2.1 1.0 Likelihood ratio test=5.2 on 1.5 df, p=0.0441 n= 228 > lfit7$coef (Intercept) 1.478892e-09 > > rm(lfit1, lfit2, lfit3, lfit4, lfit5, lfit6, lfit7) > rm(xx, lfit0) > # > # Data courtesy of Bercedis Peterson, Duke University. > # v4 of survreg fails due to 2 groups that have only 1 subject; the coef > # for them easily gets out of hand. In fact, this data set is my toughest > # test of the minimizer. > # > # A shrinkage model for this coefficient is therefore interesting > > > peterson <- data.frame( + scan('data.peterson', what=list(grp=0, time=0, status=0))) > > fitp <- survreg(Surv(time, status) ~ factor(grp), peterson) > summary(fitp) Call: survreg(formula = Surv(time, status) ~ factor(grp), data = peterson) Value Std. Error z p (Intercept) 2.291 0.115 19.92 2.93e-88 factor(grp)2 0.786 0.177 4.44 8.79e-06 factor(grp)3 0.728 0.183 3.97 7.09e-05 factor(grp)4 -1.598 0.218 -7.32 2.48e-13 factor(grp)5 -0.500 0.218 -2.29 2.21e-02 factor(grp)6 0.475 0.170 2.79 5.23e-03 Log(scale) -1.684 0.257 -6.54 6.09e-11 Scale= 0.186 Weibull distribution Loglik(model)= -26.7 Loglik(intercept only)= -40.7 Chisq= 28.18 on 5 degrees of freedom, p= 3.4e-05 Number of Newton-Raphson Iterations: 9 n= 19 > > # Now a shrinkage model. Give the group coefficients > # about 1/2 the scale parameter of the original model, i.e., .18. > # > ffit <- survreg(Surv(time, status) ~ frailty(grp, theta=.1), peterson) > ffit Call: survreg(formula = Surv(time, status) ~ frailty(grp, theta = 0.1), data = peterson) coef se(coef) se2 Chisq DF p (Intercept) 2.62 0.172 0.0874 232.0 1.00 0.0000 frailty(grp, theta = 0.1) 10.4 2.15 0.0067 Scale= 0.301 Iterations: 1 outer, 7 Newton-Raphson Variance of random effect= 0.1 I-likelihood = -11.8 Degrees of freedom for terms= 0.3 2.2 0.7 Likelihood ratio test=13.8 on 1.1 df, p=0.00027 n= 19 > > # > # Try 3 degrees of freedom Gaussian fit, since there are 6 groups. > # Compare them to the unconstrained ones. The frailty coefs are > # on a "sum to 0" constraint rather than "first coef=0", so > # some conversion is neccessary > # > ffit3 <- survreg(Surv(time, status) ~ frailty(grp, df=3, dist='gauss'), + peterson) > print(ffit3) Call: survreg(formula = Surv(time, status) ~ frailty(grp, df = 3, dist = "gauss"), data = peterson) coef se(coef) se2 Chisq DF p (Intercept) 2.44 0.223 0.066 119.7 1 0.00000 frailty(grp, df = 3, dist 16.4 3 0.00096 Scale= 0.251 Iterations: 8 outer, 33 Newton-Raphson Variance of random effect= 0.197 Degrees of freedom for terms= 0.1 3.0 0.6 Likelihood ratio test=20.1 on 1.7 df, p=2.79e-05 n= 19 > > temp <- mean(c(0, fitp$coef[-1])) > temp2 <- c(fitp$coef[1] + temp, c(0,fitp$coef[-1]) - temp) > xx <- rbind(c(nrow(peterson), table(peterson$grp)), + temp2, + c(ffit3$coef, ffit3$frail)) > dimnames(xx) <- list(c("N", "factor fit", "frailty fit"), + c("Intercept", paste("grp", 1:6))) > signif(xx,2) Intercept grp 1 grp 2 grp 3 grp 4 grp 5 grp 6 N 19.0 3.000 6.00 6.00 1.00 1.00 2.00 factor fit 2.3 0.018 0.80 0.75 -1.60 -0.48 0.49 frailty fit 2.4 -0.180 0.58 0.55 -0.77 -0.44 0.26 > # > # All but the first coef are shrunk towards zero. > # > rm(ffit, ffit3, temp, temp2, xx, fitp) > > # > # Look at predicted values > # > data(ovarian) > ofit1 <- survreg(Surv(futime, fustat) ~ age + ridge(ecog.ps, rx), ovarian) > > predict(ofit1) [1] 207.7548 172.7986 358.7735 1426.6498 1353.7357 843.8627 1102.1652 [8] 859.5084 416.3290 1280.4094 820.7329 1882.7269 876.1267 1041.8963 [15] 3477.0615 2622.9894 3761.5364 2207.8901 1362.2021 3113.9802 879.2010 [22] 180.8417 2501.0794 645.2434 555.8305 936.0103 > predict(ofit1, type='response') [1] 207.7548 172.7986 358.7735 1426.6498 1353.7357 843.8627 1102.1652 [8] 859.5084 416.3290 1280.4094 820.7329 1882.7269 876.1267 1041.8963 [15] 3477.0615 2622.9894 3761.5364 2207.8901 1362.2021 3113.9802 879.2010 [22] 180.8417 2501.0794 645.2434 555.8305 936.0103 > predict(ofit1, type='terms', se=T) $fit age ridge(ecog.ps, rx) 1 -1.37776207 -0.1765482 2 -1.56199426 -0.1765482 3 -0.87785423 -0.1301235 4 0.23872053 0.1336947 5 0.49650242 -0.1765482 6 -0.02255561 -0.1301235 7 -0.06575647 0.1801193 8 -0.31442775 0.1801193 9 -0.68264498 -0.1765482 10 0.08414685 0.1801193 11 -0.05034768 -0.1301235 12 0.51611283 0.1336947 13 -0.29527755 0.1801193 14 -0.07556594 0.1336947 15 1.43982204 -0.1765482 16 1.11152449 -0.1301235 17 1.47203732 -0.1301235 18 0.98567183 -0.1765482 19 0.19249416 0.1336947 20 1.01929333 0.1336947 21 -0.29177478 0.1801193 22 -1.56292322 -0.1301235 23 1.11035690 -0.1765482 24 -0.60116078 0.1801193 25 -0.70390024 0.1336947 26 -0.18273714 0.1336947 attr(,"constant") (Intercept) 11.14419 $se.fit age ridge(ecog.ps, rx) 1 0.0303419941 0.04119540 2 0.0343992782 0.04119540 3 0.0193326906 0.04176016 4 0.0052572625 0.04159720 5 0.0109343070 0.04119540 6 0.0004967347 0.04176016 7 0.0014481328 0.04129287 8 0.0069245373 0.04129287 9 0.0150336625 0.04119540 10 0.0018531379 0.04129287 11 0.0011087902 0.04176016 12 0.0113661806 0.04159720 13 0.0065027990 0.04129287 14 0.0016641635 0.04159720 15 0.0317087202 0.04119540 16 0.0244787327 0.04176016 17 0.0324181865 0.04176016 18 0.0217071217 0.04119540 19 0.0042392346 0.04159720 20 0.0224475568 0.04159720 21 0.0064256586 0.04129287 22 0.0344197363 0.04176016 23 0.0244530192 0.04119540 24 0.0132391631 0.04129287 25 0.0155017601 0.04159720 26 0.0040243590 0.04159720 > > temp1 <- predict(ofit1,type="link", se=T) > temp2 <- predict(ofit1, type= 'response', se=T) > all.equal(temp2$se.fit, temp1$se.fit* exp(temp1$fit)) [1] TRUE > # > # The Stanford data from 1980 is used in Escobar and Meeker > # t5 = T5 mismatch score > # Their case numbers correspond to a data set sorted by age > # > stanford2 <- read.table('data.stanford', + col.names=c('id', 'time', 'status', 'age', 't5')) > > stanford2$t5 <- ifelse(stanford2$t5 <0, NA, stanford2$t5) > stanford2 <- stanford2[order(stanford2$age, stanford2$time),] > stanford2$time <- ifelse(stanford2$time==0, .5, stanford2$time) > > cage <- stanford2$age - mean(stanford2$age) > ###fit1 <- survreg(Surv(time, status) ~ cage + cage^2, stanford2, > ### dist='lognormal') > fit1 <- survreg(Surv(time, status) ~ cage + I(cage^2), stanford2, + dist='lognormal') > fit1 Call: survreg(formula = Surv(time, status) ~ cage + I(cage^2), data = stanford2, dist = "lognormal") Coefficients: (Intercept) cage I(cage^2) 6.717591081 -0.061908619 -0.003504315 Scale= 2.362872 Loglik(model)= -863.6 Loglik(intercept only)= -868.8 Chisq= 10.5 on 2 degrees of freedom, p= 0.0053 n= 184 > ldcase <- resid(fit1, type='ldcase') > ldresp <- resid(fit1, type='ldresp') > print(ldresp) 139 159 181 119 74 120 1.379202e-01 1.452449e-01 2.628088e-02 7.320182e-02 7.624325e-02 3.994793e-02 99 108 179 43 134 160 6.328460e-02 6.128977e-02 9.685668e-03 4.767550e-02 2.980553e-02 1.036051e-01 177 153 136 133 176 66 8.990601e-03 2.114950e-02 2.557694e-02 1.591463e-01 8.618405e-03 3.389342e-02 157 114 46 65 184 88 1.141319e-02 1.990887e-02 2.044977e-02 2.480540e-02 1.085737e-05 5.474389e-02 182 180 163 84 90 68 1.786494e-03 2.574818e-03 7.654075e-03 2.024457e-02 8.561193e-02 3.894985e-02 48 174 151 125 73 105 7.007563e-02 3.767424e-03 8.314677e-03 1.248554e-02 1.954896e-02 1.831982e-02 117 96 39 38 106 14 1.739299e-02 1.789440e-02 2.406180e-02 2.364315e-02 4.717184e-02 2.051895e-02 123 135 111 83 143 69 4.763900e-02 1.663805e-02 1.367017e-02 3.204509e-02 1.857902e-02 2.058865e-02 27 113 167 156 141 30 3.896724e-02 3.775024e-02 5.091513e-03 1.528402e-02 8.682136e-03 1.746134e-02 144 158 79 102 77 36 2.593291e-02 6.620379e-03 1.375918e-02 1.547851e-02 1.786268e-02 2.330671e-02 183 122 162 121 87 2 3.720939e-05 1.696469e-02 5.954816e-03 1.233287e-02 1.655940e-02 1.089489e-01 64 150 85 71 19 21 6.015390e-02 7.469432e-03 1.666501e-02 1.893415e-02 2.645489e-02 1.843298e-01 175 169 148 138 98 104 1.789942e-02 4.379957e-03 7.619698e-03 9.332609e-03 1.428798e-02 1.445962e-02 103 12 89 3 100 55 1.449500e-02 3.404298e-02 3.358405e-02 3.113308e-02 1.412657e-02 1.179741e-02 142 63 168 72 137 10 8.641594e-03 1.426955e-02 4.554043e-03 1.094162e-02 9.645966e-03 1.226564e-02 124 17 94 82 170 149 1.222512e-02 1.088510e-02 1.493684e-02 1.844221e-02 3.988063e-02 3.038321e-02 42 128 67 109 75 26 2.127744e-02 1.439502e-02 1.285836e-02 8.944979e-03 1.997791e-02 2.757124e-02 97 58 178 140 32 126 2.549339e-02 2.356049e-02 2.057505e-03 1.269584e-02 1.103392e-02 1.253031e-02 51 101 29 33 164 60 1.430228e-02 1.637415e-02 2.201027e-02 1.118993e-02 6.417566e-03 8.492275e-03 152 145 112 76 47 118 8.651522e-03 9.608673e-03 1.609215e-02 2.168279e-02 2.622512e-02 2.274275e-02 5 129 31 35 40 130 1.184996e-02 9.391147e-03 8.772106e-03 8.526052e-03 9.451658e-03 1.295998e-02 28 56 91 44 23 37 1.285986e-02 1.536640e-02 2.031499e-02 2.807956e-02 1.965943e-02 1.733256e-02 70 132 9 81 59 127 9.129009e-03 9.121716e-03 9.083024e-03 1.025238e-02 1.032186e-02 1.183693e-02 131 80 20 25 165 24 1.403298e-02 2.363944e-02 2.181249e-02 2.723391e-02 2.043510e-02 2.019541e-02 172 146 86 107 95 116 1.152649e-02 1.265907e-02 1.538526e-02 2.107503e-02 2.298470e-02 2.128394e-02 41 61 155 166 154 4 1.791007e-02 1.763098e-02 1.345059e-02 1.285115e-02 1.218090e-02 1.470506e-02 92 93 62 34 15 173 2.599207e-02 3.098462e-02 3.037745e-02 2.166521e-02 1.478524e-02 7.517967e-03 171 52 110 50 45 53 8.681586e-03 1.679632e-02 2.540017e-02 3.470668e-02 3.229506e-02 3.017736e-02 54 147 115 16 1 6 2.416303e-02 1.870027e-02 2.172488e-02 1.164271e-01 4.257797e-02 2.459122e-02 7 57 78 161 11 8 3.585527e-02 3.587688e-02 2.865161e-02 2.603297e-02 5.640968e-02 4.338250e-02 49 13 22 18 3.425475e-02 6.262791e-02 1.029315e-01 1.442429e-01 > # The ldcase and ldresp should be compared to table 1 in Escobar and > # Meeker, Biometrics 1992, p519; the colum they label as (1/2) A_{ii} > > plot1 <- function() { + # make their figure 1, 2, and 6 + plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days", + ylim=c(.01, 10^6)) + temp <- predict(fit1, type='response', se.fit=T) + matlines(stanford2$age, cbind(temp$fit, temp$fit-1.96*temp$se.fit, + temp$fit+1.96*temp$se.fit), + lty=c(1,2,2)) + # these are the wrong CI lines, he plotted std dev, I plotted std err + # here are the right ones + # Using uncentered age gives different coefs, but makes prediction over an + # extended range somewhat simpler + refit <- survreg(Surv(time,status)~ age + age^2, stanford2, + dist='lognormal') + plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days", + ylim=c(.01, 10^6), xlim=c(0,75)) + temp2 <- predict(refit, list(age=1:75), type='quantile', p=c(.05, .5, .95)) + matlines(1:75, temp2, lty=c(1,2,2), col=2) + + plot(ldcase, xlab="Case Number", ylab="(1/2) A") + title (main="Case weight pertubations") + plot(ldresp, xlab="Case Number", ylab="(1/2) A") + title(main="Response pertubations") + } > > plot1() > # > # Stanford predictions in other ways > # > fit2 <- survreg(Surv(time, status) ~ poly(age,2), stanford2, + dist='lognormal') > > p1 <- predict(fit1, type='response') > p2 <- predict(fit2, type='response') > aeq(p1, p2) [1] TRUE > > p3 <- predict(fit2, type='terms', se=T) > p4 <- predict(fit2, type='lp', se=T) > p5 <- predict(fit1, type='lp', se=T) > aeq(p3$fit + attr(p3$fit, 'constant'), p4$fit) [1] TRUE > > aeq(p4$fit, p5$fit) [1] TRUE > #!aeq(p3$se.fit, p4$se.fit) #this one should be false > aeq(p4$se.fit, p5$se.fit) #this one true [1] TRUE > > # > # Verify that scale can be fixed at a value > # coefs will differ slightly due to different iteration paths > tol <- survreg.control()$rel.tolerance > > # Intercept only models > fit1 <- survreg(Surv(time,status) ~ 1, lung) > fit2 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale) > #all.equal(fit1$coef, fit2$coef, tolerance= tol) > #all.equal(fit1$loglik, fit2$loglik, tolerance= tol) > all.equal(fit1$coef, fit2$coef) [1] TRUE > all.equal(fit1$loglik, fit2$loglik) [1] TRUE > > # multiple covariates > fit1 <- survreg(Surv(time,status) ~ age + ph.karno, lung) > fit2 <- survreg(Surv(time,status) ~ age + ph.karno, lung, + scale=fit1$scale) > ##all.equal(fit1$coef, fit2$coef, tolerance=tol) > ##all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) > all.equal(fit1$coef, fit2$coef) [1] TRUE > all.equal(fit1$loglik[2], fit2$loglik[2]) [1] TRUE > > # penalized models > fit1 <- survreg(Surv(time, status) ~ pspline(age), lung) > fit2 <- survreg(Surv(time, status) ~ pspline(age), lung, scale=fit1$scale) > #all.equal(fit1$coef, fit2$coef, tolerance=tol) > #all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) > all.equal(fit1$coef, fit2$coef) [1] "Mean relative difference: 0.0002457368" > all.equal(fit1$loglik[2], fit2$loglik[2]) [1] "Mean relative difference: 4.971155e-07" > > rm(fit1, fit2, tol) > > # > # Test out the strata capabilities > # > tol <- survreg.control()$rel.tolerance > aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y)) > > # intercept only models > fit1 <- survreg(Surv(time, status) ~ strata(sex), lung) > fit2 <- survreg(Surv(time, status) ~ strata(sex) + sex, lung) > fit3a<- survreg(Surv(time,status) ~1, lung, subset=(sex==1)) > fit3b<- survreg(Surv(time,status) ~1, lung, subset=(sex==2)) > > fit1 Call: survreg(formula = Surv(time, status) ~ strata(sex), data = lung) Coefficients: (Intercept) 6.062171 Scale: sex=1 sex=2 0.8167551 0.6533036 Loglik(model)= -1152.5 Loglik(intercept only)= -1152.5 n= 228 > fit2 Call: survreg(formula = Surv(time, status) ~ strata(sex) + sex, data = lung) Coefficients: (Intercept) sex 5.494409 0.380171 Scale: sex=1 sex=2 0.8084294 0.6355816 Loglik(model)= -1147.1 Loglik(intercept only)= -1152.5 Chisq= 10.9 on 1 degrees of freedom, p= 0.00096 n= 228 > aeq(fit2$scale, c(fit3a$scale, fit3b$scale), tolerance=tol) [1] TRUE > aeq(fit2$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol) [1] TRUE > aeq(fit2$coef[1] + 1:2*fit2$coef[2], c(fit3a$coef, fit3b$coef), tolerance=tol) [1] TRUE > > #penalized models > fit1 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+strata(sex), lung) > fit2 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ + strata(sex) + sex, lung) > fit1 Call: survreg(formula = Surv(time, status) ~ pspline(age, theta = 0.92) + strata(sex), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.9036 0.8469 0.5688 66.45 1.00 3.3e-16 pspline(age, theta = 0.92 -0.0124 0.0067 0.0067 3.45 1.00 6.3e-02 pspline(age, theta = 0.92 2.53 2.65 4.0e-01 Scale: sex=1 sex=2 0.807 0.654 Iterations: 1 outer, 4 Newton-Raphson Theta= 0.92 Degrees of freedom for terms= 0.5 3.6 2.0 Likelihood ratio test=6.54 on 3.1 df, p=0.0937 n= 228 > fit2 Call: survreg(formula = Surv(time, status) ~ pspline(age, theta = 0.92) + strata(sex) + sex, data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.3729 0.84471 0.59118 56.92 1.00 4.5e-14 pspline(age, theta = 0.92 -0.0111 0.00666 0.00666 2.77 1.00 9.6e-02 pspline(age, theta = 0.92 2.46 2.68 4.2e-01 sex 0.3686 0.11711 0.11685 9.91 1.00 1.6e-03 Scale: sex=1 sex=2 0.800 0.636 Iterations: 1 outer, 5 Newton-Raphson Theta= 0.92 Degrees of freedom for terms= 0.5 3.7 1.0 2.0 Likelihood ratio test=16.8 on 4.2 df, p=0.00245 n= 228 > > age1 <- ifelse(lung$sex==1, lung$age, mean(lung$age)) > age2 <- ifelse(lung$sex==2, lung$age, mean(lung$age)) > fit3 <- survreg(Surv(time,status) ~ pspline(age1, theta=.92) + + pspline(age2, theta=.95) + sex + strata(sex), lung, + rel.tol=1e-6) > fit3a<- survreg(Surv(time,status) ~pspline(age, theta=.92), lung, + subset=(sex==1)) > fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung, + subset=(sex==2)) > > # relax the tolerance a little, since the above has lots of parameters > # I still don't exactly match the second group, but very close > aeq(fit3$scale, c(fit3a$scale, fit3b$scale), tolerance=tol*10) [1] "Mean relative difference: 0.001270879" > aeq(fit3$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol*10) [1] "Mean relative difference: 8.673582e-05" > pred <- predict(fit3) > aeq(pred[lung$sex==1] , predict(fit3a), tolerance=tol*10) [1] TRUE > aeq(pred[lung$sex==2], predict(fit3b), tolerance=tol*10)###????FIXME [1] "Mean relative difference: 0.01158253" > > > > > # > # Some tests using the rat data > # > rats <- read.table('../testfrail/data.rats', + col.names=c('litter', 'rx', 'time', 'status')) > > rfitnull <- survreg(Surv(time, status) ~1, rats) > temp <- rfitnull$scale^2 * pi^2/6 > cat("Effective n =", round(temp*(solve(rfitnull$var))[1,1],1), "\n") Effective n = 65.8 > > rfit0 <- survreg(Surv(time, status) ~ rx , rats) > print(rfit0) Call: survreg(formula = Surv(time, status) ~ rx, data = rats) Coefficients: (Intercept) rx 4.9831358 -0.2385112 Scale= 0.2637875 Loglik(model)= -242.3 Loglik(intercept only)= -246.3 Chisq= 8 on 1 degrees of freedom, p= 0.0047 n= 150 > > rfit1 <- survreg(Surv(time, status) ~ rx + factor(litter), rats) > temp <- rbind(c(rfit0$coef, rfit0$scale), c(rfit1$coef[1:2], rfit1$scale)) > dimnames(temp) <- list(c("rfit0", "rfit1"), c("Intercept", "rx", "scale")) > temp Intercept rx scale rfit0 4.983136 -0.2385112 0.2637875 rfit1 4.902438 -0.2189410 0.2025434 > > > rfit2a <- survreg(Surv(time, status) ~ rx + + frailty.gaussian(litter, df=13, sparse=F), rats ) > rfit2b <- survreg(Surv(time, status) ~ rx + + frailty.gaussian(litter, df=13, sparse=T), rats ) > > rfit3a <- coxph(Surv(time,status) ~ rx + + frailty.gaussian(litter, df=13, sparse=F), rats ) > rfit3b <- coxph(Surv(time,status) ~ rx + + frailty(litter, df=13, dist='gauss'), rats) > > temp <- cbind(rfit2a$coef[3:52], rfit2b$frail, rfit3a$coef[2:51], rfit3b$frail) > dimnames(temp) <- list(NULL, c("surv","surv.sparse","cox","cox.sparse")) > pairs(temp) > apply(temp,2,var)/c(rfit2a$scale, rfit2b$scale, 1,1)^2 surv surv.sparse cox cox.sparse 0.1346218 0.1346218 0.1224049 0.1207863 > apply(temp,2,mean) surv surv.sparse cox cox.sparse 6.546887e-19 1.242665e-18 -1.301043e-17 -2.279128e-18 > > # The parametric model gives the coefficients less variance for the > # two fits, for the same df, but the scaled results are similar. > # 13 df is near to the rmle for the rats > > rm(temp, rfit2a, rfit2b, rfit3a, rfit3b, rfitnull, rfit0, rfit1) > options(na.action="na.exclude") > temp <- matrix(scan("data.mpip", skip=23), ncol=13, byrow=T) > dimnames(temp) <- list(NULL, c('ved', 'angina', 'education', 'prior.mi', + 'nyha', 'rales', 'ef', 'ecg', 'angina2', 'futime', + 'status', 'admit', 'betab')) > > mpip <- data.frame(temp) > lved <- log(mpip$ved + .02) > > fit1 <- coxph(Surv(futime, status) ~ pspline(lved) + factor(nyha) + + rales + pspline(ef), mpip) > > temp <- predict(fit1, type='terms', se.fit=T) > yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4], + temp$fit[,4] - 1.96*temp$se[,4]) > index <- order(mpip$ef) > index<-index[!is.na(yy[index,1])] > matplot(mpip$ef[index], yy[index,], type='l', lty=c(1,2,2), col=1, + xlab="Ejection Fraction", ylab="Cox model risk", + main="Post-Infarction Survival") > > fit2 <- coxph(Surv(futime, status) ~ lved + factor(nyha) + rales + + pspline(ef, df=0), mpip) > temp <- predict(fit2, type='terms', se.fit=T) > yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4], + temp$fit[,4] - 1.96*temp$se[,4]) > matplot(mpip$ef[index], yy[index,], type='l', lty=c(1,2,2), col=1, + xlab="Ejection Fraction", ylab="Cox model risk", + main="Post-Infarction Survival, AIC") > > > fit3 <- survreg(Surv(futime, status) ~ lved + factor(nyha) + rales + + pspline(ef, df=2), mpip, dist='lognormal') > temp <- predict(fit3, type='terms', se.fit=T) > yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4], + temp$fit[,4] - 1.96*temp$se[,4]) > matplot(mpip$ef[index], yy[index,], type='l', lty=c(1,2,2), col=1, + xlab="Ejection Fraction", ylab="Log-normal model predictor", + main="Post-Infarction Survival") > q()