R version 2.15.0 (2012-03-30) Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Test out the "return.all" argument of xpred > # The data set has the virtue of continuous, categorical, and missings > # > library(rpart) > require(survival) Loading required package: survival Loading required package: splines > > fit1 <- rpart(Surv(pgtime, pgstat) ~ age + eet + g2+grade+gleason +ploidy, + stagec, method='poisson') > > xgrp <- rep(1:3, length=nrow(stagec)) # explicitly set the xval groups > > xfit1 <- xpred.rpart(fit1, xval=xgrp, return.all=T) > xfit2 <- array(0, dim=dim(xfit1)) > cplist <- as.numeric(dimnames(xfit1)[[2]]) > > for (i in 1:3) { + tfit <- rpart(Surv(pgtime, pgstat) ~ age + eet + g2+grade+gleason +ploidy, + stagec, method='poisson', subset=(xgrp !=i)) + # xvals are actually done on the absolute risk (node's risk /n), not on + # the rescaled risk ((node risk)/ (top node risk)) which is the basis + # for the printed CP. To get the right answer we need to rescale. + cp2 <- cplist * (fit1$frame$dev[1] / fit1$frame$n[1]) / + (tfit$frame$dev[1] / tfit$frame$n[1]) + + for (j in 1:length(cp2)) { + tfit2 <- prune(tfit, cp=cp2[j]) + temp <- predict(tfit2, newdata=stagec[xgrp==i,], type='matrix') + xfit2[xgrp==i, j,] <- temp + } + } > > all.equal(xfit1, xfit2, check.attributes=FALSE) [1] TRUE > > proc.time() user system elapsed 0.449 0.072 0.558